
INTERACTIVE SWARM ORCHESTRA
A GENERIC PROGRAMMING ENVIRONMENT FOR

SWARM BASED COMPUTER MUSIC
Daniel Bisig Martin Neukom John Flury

Zurich University of the Arts
Institute for Computer Music and Sound Technology

Baslerstrasse 30
CH-8048 Zürich

Switzerland

ABSTRACT

The project Interactive Swarm Orchestra (ISO) employs
swarm algorithms to control sound synthesis and sound
positioning. As part of this endeavour, a set of Open
Source software libraries has been developed that serves
as flexible toolkit for musicians and scientists who in-
tend to experiment with swarm based music. This paper
introduces the libraries for sound synthesis (ISO Synth)
and swarm simulation (ISO Flock). It puts particular
emphasis on the associated programming concepts and
data structures and provides source code examples.

1. INTRODUCTION

The ISO project tries to explore novel methods for gen-
erative composition and performance that derive from
Artificial Life research into self-organised and autono-
mous systems. Such systems can give rise to adaptive,
dynamic and complex patterns on different scales and
offer interesting opportunities and challenges with re-
gard to interactivity, feedback and control [1]. Swarm
simulations explore principles of self-organisation and
emergence in the appearance of group behaviour [2, 3].
These algorithms are particularly interesting for genera-
tive art and computer music for several reasons. They
can exhibit a wide variety of different behaviours that
range from simple reactive responses to highly complex
and adaptive processes. They lend themselves to intui-
tive and natural forms of interaction. And they can be
easily tailored to deal with any number and dimension
of parameters. For a more profound discussion of the
conceptual aspects of the ISO project please refer to [4,
5].
Several artists and musicians have employed swarm
algorithms in their work (see [4] for an overview). All
these works represent highly idiosyncratic examples that
illustrate some of the aesthetic and interactive possibili-
ties of swarm-based art. On the other hand, none of
these examples explore the potentials of swarm algo-
rithms for art on a more general and broad level. The
authors believe that there is a need for a conceptual and
technical foundation that supports and promotes re-
search and artistic activities in swarm based music and
art. The project ISO hopes to contribute to the estab-
lishment of such a foundation. The first tangible result
of this project is a set of software tools for the creation
of swarm based music.

2. ISO SOFTWARE ENVIRONMENT

Throughout the course of the ISO project, several C++
libraries (see table 1) have been developed in order to

facilitate research and experimentation in swarm based
computer music. These libraries are provided as Open
Source software and can be downloaded from the pro-
ject’s web-site [6]. This web-site also hosts detailed
documentation and tutorials. The libraries have been
tested on MacOSX. A port to Linux is currently under
way. Since the ISO libraries depend solely on cross plat-
form third party libraries that are available for OSX,
Linux and Windows, porting ISO to Windows should be
straight forward.

ISO Base data and exception types
ISO Math vectors, matrices, quaternions
ISO Data arrays, buffers, pools
ISO Event event scheduling and execution
ISO Com direct and network based communication
ISO XML xml reader and writer
ISO Serialize serialisation
ISO Geom splines, meshes, grids
ISO Font font to spline conversion
ISO Space space representations, distance algorithms
ISO GL OpenGL wrappers
ISO MIDI MIDI handling
ISO Tracker camera based tracking
ISO Synth sound synthesis and processing
ISO Flock swarm simulation

Table 1. ISO Libraries

At the onset of the ISO project in 2006, we specified a
list of requirements that needed to be met by a prospec-
tive implementation of a swarm simulation and sound
synthesis software environment. All software elements
should be based on the same programming concepts and
standardised design. Their functionality should be ge-
neric, flexible and easily expandable. They should pro-
vide a simple and well documented API and require a
gradual learning curve when moving from high to low
level implementations. The libraries should reflect a
clear separation of their different functionality and data
management requirements. Finally, the libraries should
support the implementation of applications that are ei-
ther monolithic (i.e. combine all functionality in a single
application) or distributed (i.e. functionality is divided
among several applications that may run on different
computers). We decided that the development of entirely
new software libraries constitutes the best approach to
meet these requirements

This paper will mainly discuss the rationale and func-
tionality of the two main ISO libraries: ISO Synth and

ISO Flock. The smaller ISO libraries will only be men-
tioned in the context of these two main libraries.

3. ISO SYNTH

ISO Synth is a library for real time sound synthesis,
signal processing, and audio spatialisation. It follows the
famous Music N paradigm [7]. Accordingly, audio han-
dling is distributed among discrete units that exchange
audio and control data via their interconnected ports.
There are no limitations with regard to the topology of
these interconnections (e.g. cyclic audio processing
graphs via recurrent connections are valid). ISO Synth
doesn’t distinguish between audio-rate and control-rate
but rather allows the specification of different sampling
rates for individual units and ports. Scores and MIDI-
based control are realised via the ISO event system. The
state of an ISO Synth patch can be stored and recreated
at any time via XML based serialisation functionality.
Finally, ISO Synth relies on the ISO Com system to
exchange data directly or via UDP with other ISO appli-
cations.

ISO Synth currently supports a variety of standard sig-
nal processing and sound synthesis techniques [4] as
well as audio spatialisation via two and three-
dimensional ambisonic projection [8].

3.1. Implementation

Audio data flow in ISO Synth proceeds according to the
pull model. It interfaces with audio hardware and other
audio applications via the virtual ports of the Jack Audio
Connection Kit [9]. Audio and control data are encapsu-
lated in buffer objects and can consist of an arbitrary
number of channels and a power of two number of
frames. Buffer objects are exchanged among audio units
via interconnected ports. The connections are handled
by instances of the link class. These links take care of
changes in sampling rate, channel count and frame
count that might be necessary between connected ports.
Units can possess five different types of ports that all
derive from a basic port class. Input, output, control and
internal ports deal with continuous audio data. Control
and switch ports can be manually set to particular values
or receive event based signals. A unit can possess an
arbitrary number of control and switch ports but only
zero or one single input, output and internal port (see
Figure 1). Input and output ports form an unit’s external
entry and exit points for audio data. Internal ports repre-
sent a special form of output port that allows units to
encapsulate internal units (see Figure 1 right side). Con-
trol ports modify parameters of a unit (such as fre-
quency). Control ports can be continuously updated by
connecting them to other units’ output ports or they can
be set either manually or via events. Switch ports serve
to reconfigure a unit in a more fundamental way than
control ports do (for example to enable or disable loop-
ing in a sample playback unit). Switch ports cannot be
connected via links but are set either manually or via
events.

Custom units are implemented by deriving from one of
the unit’s base classes and overwriting its process func-
tion. ISO Synth assures that all unit ports have been
updated prior to the execution of the user’s function
code and therefore grant access to properly refreshed
audio and control data.

Figure 1. Ports in ISO Synth. Large central circles
represent units. Small peripheral circles represent ports.
Dimmed peripheral circles indicate an arbitrary number
of ports. Filled arrows indicate ports connected via
links. Outlined arrows indicate manual or event based
port modifications. The left image depicts a standard
unit. The right image shows a complex unit that encap-
sulates internal units. The dashed lines indicate that
control and switch ports of internal units may mimic
ports of the encompassing unit.

ISO Synth provides a patch class that can be subclassed
to encapsulate the creation and configuration of com-
monly used combinations of units. Also, this class sim-
plifies communication with other ISO programs by pro-
viding the virtual function “consumeMessage” that is
called whenever a message is received.

ISO Synth provides hash maps for associating units,
ports and links with unique names. These names can be
user specified (units) or are automatically generated
(ports and links). The synth class provides functions for
retrieving instances of these classes via their names.
This approach improves readability of code at the cost
of postponing feedback about coding errors from com-
pile to run time. Most ISO libraries make heavy use of
exception handling and try their best to generate mean-
ingful messages whenever a runtime error occurs.

3.2. Examples

// create units for simple FM synthesis
WaveTableOscil* carrier =
 new WaveTableOscil ("sinewave");
WaveTableOscil* mod =
 new WaveTableOscil("sawtoothwave");
OutputUnit* dac =
 new JackOutputUnit(2, "Built-in Audio");
// manually set port values
mod->set("frequency", 600.0);
mod->set("offset", 900.0);
mod->set("amplitude", 200.0);
// connect output port to control port
mod->connect(carrier, "frequency");
// connect carrier's output port to DAC's input port
carrier->connect(dac);
// set control port via events
Synth::get().eventManager().createEvent(2000.0,
 mod->controlPort("amplitude"), 50.0, 1000.0);
Synth::get().eventManager().createEvent(4000.0,
 mod->controlPort("amplitude"), 400.0, 1000.0);

Example 1. Unit Creation and Manual, Event Based
and Link Based Control Port Changes.

control

input

output

switch

a
u
d
io

ev
en
t

m
an
ua
l

a
u
d
io

output

input

output

internal

audio

eventmanualcontrol

input

output

switch

Unit

audio

a
u
d
io

a
u
d
io

output

input

output

e
ve
n
t

m
a
n
u
a
l

eventmanual

class LimiterUnit : public ProcessUnit {

 ControlPort* mThreshold1;
 ControlPort* mThreshold2;

 Buffer* mThresh1Buffer;
 Buffer* mThresh2Buffer;

 LimiterUnit():ProcessUnit() {
 mThreshold1 = createControlPort("thresh1");
 mThreshold2 = createControlPort("thresh2");
 mThresh1Buffer = mThreshold1->buffer();
 mThresh2Buffer = mThreshold2->buffer();
 //set thresholds to default values
 mThreshold1->set(1.0f);
 mThreshold2->set(-1.0f);

 }

 void process(Buffer* pBuffer) {
 Unit::process(pBuffer);
 if (!mActive) return;

 pBuffer->truncate(

 *mThresh1Buffer,*mThresh2Buffer);
 }
}

Example 2. Custom Unit Class Derived from Pro-
cessUnit.

class AdditiveSynthesisPatch : public Patch {
 unsigned int mNumOscs; //num of partials
 sample mRootFreq; //fundamental frequency
 WaveTableOscil** mOscils; //bank of oscilators
 ControlPort** mFreqPorts; //frequency control ports
 ControlPort** mAmpPorts; //amplitude control ports

 AdditiveSynthesisPatch():Patch()
 , mNumOscs(10), mRootFreq(220)
 {}

 void construct() {
 mOscils = new WaveTableOscil*[mNumOscs];
 mFreqPorts = new ControlPort*[mNumOscs];
 mAmpPorts = new ControlPort*[mNumOscs];

 for (unsigned int i = 0; i < mNumOscs; i++) {

 //init oscilators
 mOscils[i] = new WaveTableOscil("sinewave");
 //connect each oscilator to audio output
 mOscils[i]->connect(output);
 //obtain control ports
 mFreqPorts[i] = mOscils[i]->
 controlPort("frequency");
 mAmpPorts[i] = mOscils[i]->
 controlPort("amplitude");
 }
 }

 void consumeMessage(const com::Message& pMessage) {
 unsigned int partialIndex = 0;
 sample harmonicFreq = mRootFreq;
 sample* values;
 unsigned int valueCount;

 while (partitialIndex < mNumOscs) {
 pMessage.nextValues(valueCount, &values);
 harmonicFreq += mRootFreq;
 mFreqPorts[partialIndex]->set(
 values[1]*harmonicFreq);
 mAmpPorts[partialIndex]->set(values[0]);
 partialIndex++;
 }
 }

Example 3. Implementation of “construct” and “con-
sumeMessage” Function in Custom Patch Class.

4. ISO FLOCK

ISO Flock is a library that supports the creation of
multi-agent simulations. It emphasises simulations of
large numbers of point-like agents that possess simple
behaviours. Apart from this restriction, ISO Flock con-
stitutes a highly generic toolkit that supports a wide di-
versity of swarm simulations. In particular, ISO Flock

doesn’t impose any restrictions on the number, type and
dimensionality of parameters that agents can possess.
ISO Flock provides functions to calculate spatial rela-
tionships among parameters as well as between parame-
ters and other spatial structures such as splines or
vector-fields. Agent behaviours establish functional rela-
tionships among these parameters. ISO Flock closely
resembles ISO Synth in its integration with ISO Event
and ISO Com. Agent parameters can be modified in a
score like fashion via events. ISO Flock can exchange
data with other ISO applications. Two and three dimen-
sional agent parameters and spaces can be visualised
with ISO GL. This library provides a set of OpenGL
wrapper classes and provides simple functionality for
mouse and keyboard based navigation through the visu-
alisation space.

ISO Flock currently provides a basic collection of be-
haviours and spatial structures. This includes behav-
iours for dealing with space boundaries, for synchronis-
ing neighbouring parameters and for responding to the
presence of spatial objects. Spatial structures exist that
handle distance calculations between point-objects
(Quadtree, Octree or higher dimensional N-Tree),
bounding boxes (R-Tree) and vector-fields (region aver-
aging or highest value search).

4.1. Implementation

The implementation of ISO Flock defines a set of
classes from which simulations can be built either by
configuring these classes or by creating derived classes.
Similar to ISO Synth, ISO Flock relies heavily on hash
maps to uniquely identify class instances via names for
retrieval and manipulation. This time, this feature does
not only lead to improved code readability but provides
the basic means for class introspection and is an impor-
tant prerequisite for the generic implementation of the
agent system. The simulation class manages all agents
and updates their behaviours, parameters and associated
spatial structures at regular intervals. The swarm class is
a convenience class that simplifies the creation, deletion
and management of groups of agents that possess the
same properties. This class provides a similar interface
as the agent class but its functions affect all agents con-
tained within a swarm. The agent class itself provides
very little functionality and mainly serves as a labelled
container for parameters and behaviours. An agent’s
state is represented by its parameter values. Parameters
are composed of two vectors of arbitrary dimensions
that handle the parameter’s current and buffered value.
Furthermore, parameters store spatial relationships with
neighbouring parameters (Euclidian distance and direc-
tion) within so called neighbour groups. Each neighbour
group is associated with a particular parameter space.
During every simulation step, the parameter spaces
themselves calculate these relationships and update the
neighbour groups accordingly. Agent behaviours define
functional relationships among parameters. Behaviours
distinguish between input parameters, internal parame-
ters and output parameters. Internal parameters are spe-
cific for a particular behaviour and are automatically
created when the behaviour is instantiated for the first
time. Whenever a behaviour is executed, it reads from
its input and internal parameters as well as associated
neighbour groups and writes into its output parameters.
Custom behaviours can be developed by subclassing the

abstract base behaviour class and implementing its “act”
function. This function is called once during a simula-
tion step for each instance of the behaviour and is sup-
posed to provide the necessary functionality to read and
write an agent’s parameters.

4.2. Examples
Swarm s("demo swarm");

// create and set parameters
s.addParameter("pos", 3); //position
s.addParameter("vel", 3); //velocity
s.addParameter("force", 3); //force
s.addParameter("acc", 3); //acceleration
s.addParameter("mass", 1); //mass
s.set("mass",1.0); //set parameter value

// create behaviours and set their internal parameters
s.addBehavior("reset",ResetBehavior("", "force"));
s.addBehavior("rand",RandomizeBehavior("", "force"));
s.set("rand_range", 0.1);
s.addBehavior("damp",DampingBehavior("vel",
 "force"));
s.set("damp_prefVelocity", 0.20);
s.set("damp_amount", 0.5);
s.addBehavior("acc", AccelerationBehavior(
 "mass vel force", "acc"));
s.set("acc_maxAngularAcceleration", 0.1);
s.addBehavior("integration", EulerIntegration(
 "pos vel acc", "pos vel"));
s.set("integration_timestep", 0.1);

// create swarm agents
s.addAgents(200);

Example 1. Creation of a Swarm

// create parameter space
space::SpaceManager::get().addSpace(
 new space::PointSpace("pos_space", 3));

// create neighbour group for parameter
s.assignNeighbors("pos", "pos_space", true,
 new space::NeighborGroupAlg(1.7, 4, true));

// create BOIDS behaviors
s.addBehavior("cohesion", CohesionBehavior(
 "pos:pos_space", "force"));
s.set("cohesion_minDist", 0.0);
s.set("cohesion_maxDist", 1.7);
s.set("cohesion_amount", 0.1);

s.addBehavior("alignment",AlignmentBehavior(
 "pos:pos_space vel", "force"));
s.set("alignment_minDist", 0.0);
s.set("alignment_maxDist", 1.7);
s.set("alignment_amount", 0.5);

s.addBehavior("evasion",EvasionBehavior(
 "pos:pos_space","force"));
s.set("evasion_maxDist", 1.0);
s.set("evasion_amount", 0.5);

Example 2. Extension of Example 1 That Deals With
Neighborhood Calculations.

class AverageBehavior : public Behavior {
 Parameter* mParIn1; //input parameter 1
 Parameter* mParIn2; //input parameter 2
 Parameter* mParOut; //output parameter

 //...

 void act(){

math::Vector<real>& valIn1 = mParIn1->values();

 math::Vector<real>& valIn2 = mParIn2->values();

math::Vector<real>& valOut =
 mParOut->backupValues();

 valOut = (valIn1 + valIn2) / 2.0;
 }
}

Example 3. Creation of a Custom Behaviour

5. CONCLUSION AND OUTLOOK

The ISO software libraries have reached a state of func-
tionality and stability that allows the project to transition
from its prior stage of pure software development into a
phase that balances engineering and musical experimen-
tation more evenly. On the musical application side, we
are currently collaborating with the Tanz Akademie
Zürich (http://www.tanzakademie.ch) to realise per-
formances that employ ISO software for linking dance
movements to acoustical feedback. We are also currently
constructing a dodecahedral scaffold for 3D sound-
projection, which will serve as a flexible and mobile
space for ISO-based sound installations. Concerning
further software development, we plan to quickly reach
the following goals: porting of ISO libraries to Linux
and Windows, implementing an OSC layer within the
ISO COM library, transfer of camera tracking function-
ality into a dedicated library (instead of a fixed applica-
tion as is currently the case). In the long term, we would
like to develop a visualisation library that is highly cus-
tomisable and can be easily integrated with ISO Flock
and ISO Synth. And last but not least, we are looking
forward to connect the ISO project to research in ges-
tural musical interfaces in order to explore and possibly
develop hardware devices that support more adequate
and intuitive forms of interaction with swarm based en-
vironments than camera tracking solutions are able to.

6. REFERENCES

[1] Sommerer, C. and Mignonneau, L. “Modeling
Complex Systems for Interactive Art”, Applied
Complexity - From Neural Nets to Managed
Landscapes, Institute for Crop & Food
Research, Christchurch, New Zealand, 2000.

[2] Martinoli, A. “Swarm intelligence: emergence
and self-organization in natural and artificial
systems.” Course notes, EPFL, 2005.

[3] Eberhart, R., Shi, Y. and Kennedy, J. Swarm
Intelligence, Morgan Kaufmann, 2001.

[4] Bisig, D., Neukom, M. and Flury, J.
“Interactive Swarm Orchestra”, Proceedings of
the Generative Art Conference, Milano, Italy,
2007.

[5] Bisig, D., Neukom, M. and Flury, J.
“Interactive Swarm Orchestra, an Artificial
Life Approach to Computer Music”,
International Computer Music Conference,
Belfast, Ireland, 2008.

[6] ISO project website: http://www.i-s-o.ch

[7] Dodge, C. and Jerse, T. A. Computer Music,
Schirmer Books, New York, USA, 1985.

[8] Malham, D. G. and Anthony, M., “3-D Sound
Spatialization using Ambisonic Techniques”,
Computer Music Journal 19(4), 1995.

[9] Jack, http://jackaudio.org/

http://www.tanzakademie.ch
http://www.tanzakademie.ch
http://www.i-s-o.ch
http://www.i-s-o.ch
http://jackaudio.org
http://jackaudio.org

