
TOOLS AND ABSTRACTIONS FOR SWARM BASED MUSIC AND ART

Daniel Bisig, Philippe Kocher

Institute for Computermusic and Sound Technology
Zurich University of the Arts
daniel.bisig@zhdk.ch

philippe.kocher@zhdk.ch

ABSTRACT

A new version of our swarm simulation environment
for musical and artistic applications is presented. The
main improvements of this version concern the integration
of an OSC based communication protocol and the addi-
tion of a graphical user interface. These extensions offer
a variety of approaches for the configuration, manipula-
tion and application of simulated swarms in real time. We
hope, that these improvements open up the application of
swarm simulations to a wider audience of artists and mu-
sicians.

1. INTRODUCTION

The swarm simulation tools and their application in mu-
sical and artistic creation and education have originated
within the context of two research projects entitled ”In-
teractive Swarm Orchestra” (ISO) and ”Interactive Swarm
Space” (ISS) that were conducted at the Institute for Com-
puter Music and Sound Technology (ICST) of the Zurich
University of the Arts (ZHdK). The projects have been
motivated by the multitude of artistic and musical appli-
cations of swarm simulations such as [7, 8, 10, 11]. Due
to the diversity and uniqueness of these approaches, the
projects attempt to provide a systematic foundations for
the integration of swarm simulations into creative pro-
cesses in computer music and generative art. As part of
this endeavor, we have explored a variety of strategies
that emphasize the creative potential of capturing artis-
tic ideas through highly customized swarm simulations
rather than using standard swarms as black box mecha-
nisms [2, 9]. Furthermore, we have developed software
tools for the creation and control of simulated swarms
[1, 3]. These tools try to strike a balance between a simple
integration into existing musical and artistic software en-
vironments and a high degree of flexibility and customiz-
ability that characterizes scientific multi agent simulation
software. Finally, we have realized several prototypical
works that include musical compositions, interactive in-
stallations and dance performances [4, 5, 6].

Recently, we have started to integrate the results of the
two research projects into our pedagogical activities. For
this, we have modified and extended the software tools to
help students to quickly gain an appreciation and under-
standing for the creative capabilities of swarm simulations

and to be able to gradually expand the artistic and techni-
cal sophistication and uniqueness of their ideas in order to
realize entire works.

This paper presents the current state and capabilities
of the swarm simulations tools and discusses their appli-
cation both in education and in our own artistic activities.

2. TECHNICAL DESCRIPTION

2.1. Simulation

The swarm simulation environment has started its exis-
tence as an open source C++ library that allows to develop
a wide range of swarm behaviors and that provides a net-
work communication protocol to control and retrieve sim-
ulation parameters in real time [3]. The simulation library
is highly generic in that it does not pre-specify the phys-
ical or biological meaning of any of the agents’s proper-
ties nor how these properties interrelate with each other
via the agents’ behaviors. Neighborhood relationships
among agents are handled via their properties, which are
assigned positions within corresponding property spaces
and its these properties that ”perceive” each other depend-
ing on their distance and visibility constraints. There is no
limit with respect to the number of swarms that can coex-
ist and interact with each other. Simulations can be saved
to or restored from XML formatted data files at any point
during the running simulation.

2.2. Control and Communication

The swarm simulation environment provides an OSC
based communication protocol. This feature permits the
usage of any OSC capable software to create arbitrary
swarm simulations without having to resort to C++ pro-
gramming. It also allows to retrieve swarm simulation
data to control audio or video generation processes.

In order to trigger a simulation event, the OSC mes-
sage format follows a syntax that employs the address part
of the message to identify the type of event and the argu-
ments part of the message to supply the necessary param-
eters for executing that particular event.

Syntax: /Event Type Parameter1
Parameter2...ParameterN

Example: /AddAgents "Boids" 5

mailto:daniel.bisig@zhdk.ch
mailto:philippe.kocher@zhdk.ch

To receive OSC messages from the swarm simulation,
the desired agent properties have to be registered for com-
munication. The format of the OSC messages sent by the
swarm simulation is as follows: the address part of the
OSC message contains a path representing the particular
agent property whereas the arguments part contains the
values.

Syntax: /SwarmName/AgentNr/Property-
Name Values

Example: Boids/1/pos 0.1 0.4 0.3

2.3. GUI based Control

To provide a user friendly environment for the creation
and control of customized swarms, we have developed a
standalone application for Mac OS X that hides the intri-
cacies of the OSC communication syntax. This software
exposes a slightly reduced set of OSC commands via a
collection of graphical controls (see Figure 1). The num-
ber and types of these controls correspond to the num-
ber and types of swarm properties and behaviors. When
restoring a swarm from a serialized state, the GUI modi-
fies itself accordingly. And when manually changing, re-
moving or adding control elements in the GUI, the cor-
responding properties and behaviors in the simulation are
concomitantly changed, removed or added.

Figure 1. A screenshot of the GUI application together
with the visualization that is currently controlled by it.

3. LEVELS OF ABSTRACTION

The improvement and extension of the original C++ li-
brary into a software environment for remote and real time
configuration and control has expanded the number of ap-
proaches with which artists and musicians can explore and
integrate swarm simulations into their creative process.
Each approach represents a different level of abstraction
of the underlying simulation functionality and provides a
different degree of flexibility and spontaneity (see table 1).

Obviously, the level of C++ offers the greatest free-
dom to configure a swarm simulation including the possi-
bility to modify the core functionality of the simulation li-
brary. The main drawback of a C++ based approach lies in
the required programming expertise, a necessary familiar-
ization with the data structures and core functionalities of

C++ OSC GUI
Programming Control Control

Abstraction low medium high
Flexibility high medium low
Spontaneity low high high
Technical
Expertise

high medium low

Table 1. Three different approaches to configuring and
controlling simulated swarms.

the simulation environment and a limited ability to sponta-
neously experiment with different swarm configurations.

OSC commands provide almost the same degree of
control as C++. The higher level of abstraction that is
inherent in an OSC based approach flattens the learning
curve for experimenting with swarm simulations. In addi-
tion, since OSC commands can be dispatched at any time
during a running simulation, this approach allows for real
time interaction and spontaneous experiments. The pos-
sibly most important benefit of using OSC lies in the fact
that it enables a simple integration of the swarm simula-
tions into whatever OSC capable software infrastructure
the user is already familiar with.

The standalone GUI application does an excellent job
at hiding most of the details that are required to create a
swarm simulation. In particular, it automates much of the
basic swarm setup procedure such as adding frequently
used agent properties and behaviors and it gracefully re-
solves dependencies between behaviors, properties and
neighborhood spaces when new behaviors are added or
old ones are removed. On the other hand, this high level
of abstraction limits the diversity of swarms that can be
created much more than an OSC or C++ based approach.

It is important to stress the fact that these three dif-
ferent approaches are not mutually exclusive. It is very
well possible to create a swarm simulation via C++, store
the simulation in an XML file and reload this XML file
into the GUI application. Or it is equally imaginable to
configure a basic swarm simulation via the GUI applica-
tion and subsequently modify it via OSC commands. In
order to promote a flexible transition between these differ-
ent approaches, we have implemented a similar usage and
configuration functionality and syntax for each of them.
As an illustration, Figure 2 depicts an excerpt of the same
basic swarm configuration steps that have to be conducted
when working with C++, sending OSC commands or us-
ing the GUI application.

4. APPLICATION SCENARIOS

The following section presents three different application
scenarios in which the swarm simulation tools have been
extensively used. These scenarios are a teaching situation,
the creation of an audiovisual composition, and the real-
ization of an interactive installation.

Figure 2. An excerpt of the steps necessary for configur-
ing a simple swarm simulation. From top to bottom: C++
source code, OSC commands, GUI controls.

4.1. Teaching

In 2011, the authors have been teaching an interdisci-
plinary course entitled ”Interactive Swarm Space” at the
ZHdK. The background of the attending students included
computer and instrumental music, new media, engineer-
ing and natural sciences. The course was based on the
swarm simulation tools developed thus far and aimed at
familiarizing the students with sufficient conceptual back-
ground and practical skills to allow them to realize their
own swarm-based artworks and compositions. The course
ended with the public performance of a total of five stu-
dent works.

The students were initially presented some of the
concepts of algorithmic composition and generative art
in general and swarm based music and art in particu-
lar. Subsequently, they were acquainted with the software
tools including the standalone GUI application, example
patches in Max/MSP and SuperCollider for configuring
swarms and receiving swarm data, and XCode based C++
projects for creating simple swarms. Thereafter, the stu-
dents started to work on their own projects. Most of the
students decided to use the standalone GUI application to
design their swarm simulations and a Max/MSP patch to
receive agent position data via OSC for musical and visual
rendering.

4.2. Composition

The two authors have collaboratively created an audio-
visual composition entitled ”Trails” that combines a live
performance of acoustic instruments with an electronic
playback and a pre-rendered generative film (see Fig-
ure 3). Both the electronic music part of the composition
and the generative film were heavily relying on a com-
bination of standalone GUI application and OSC based
configuration and control of the swarm simulations. This
approach allowed for a very flexible and interactive exper-
imentation with different swarm behaviors throughout the
creation process. For the sound synthesis part, the tempo-
ral and spatial dynamics of the swarms provided interest-

ing forms of semi-stochastic input to the audio patches.
An interesting aspect of the collaboration involved the
reuse of the algorithmic temporal patterns that underly the
composition’s score in order to trigger behavioral changes
in the swarm simulation that are synchronized to the in-
strumental music. This approach created an overarching
coherence throughout the entire piece.

Figure 3. World premiere of Trails at the British Film
Institute in London.

4.3. Installation

The installation entitled Flowspace has been realized as a
collaboration between one of the authors with two mem-
bers of the ICST, Jan Schacher and Martin Neukom. The
installation was realized in the shape of a dodecahedron
and consists of a touch sensitive surface, a 20 speakers
ambisonics audio setup and three surfaces for video rear
projection (see Figure 4). The installation served as a
platform for the realization and presentation of interac-
tive swarm based audiovisual compositions. So far, three
different works have been realized and were shown in the
context of an exhibition entitled Milieux Sonores (Kun-
straum Walcheturm, Zurich, 2009 and Gray Area Foun-
dation for the Arts, San Francisco, 2010). The installa-
tion has been extensively documented in two other pub-
lications [4, 9]. For each composition, a dedicated and
highly customized swarm simulation was developed in
parallel with the generative visual and acoustic programs
that were controlled by the simulation. This approach
helped to connect the simulation design decisions to the
artistic and musical ideas that informed each of the com-
positions. For each of these works, the swarm simula-
tions were programmed in C++ and subsequently diver-
sified and serialized into different simulation states via
OSC based graphical user interfaces. During the exhibi-
tion, OSC based communication provided the means to
reload different simulations and states, to modify simu-
lation properties based on the visitors’ interactions, and
to control the audiovisual feedback processes in a coordi-
nated manner.

5. RESULTS AND CONCLUSIONS

The swarm simulation environment and its OSC based
functionality have proven to be sufficiently robust and ver-

Figure 4. Interaction with the Flowspace installation. Ex-
hibition ”Milieux Sonores”, Gray Area Foundation for the
Arts, San Francisco, 2010.

satile to allow its usage in education and artistic realiza-
tions. The standalone GUI application complements this
environment in that it not only provides a gentle introduc-
tion into the usage of swarm based simulations for users
that lack programming skills, but also offers a good start-
ing point for any artistic realizations as it allows to quickly
sketch and experiment with customized swarms. Only the
realization of rather exotic swarm simulations required
an implementation in C++. But as these new behaviors
become part of the simulation library, the limitations of
a purely OSC based approach gradually decrease. The
software and documentation that can be accessed via the
project’s website [1] keep up with these improvements.

Our teaching experience proved that the standalone
GUI application is very helpful in conveying a practi-
cal understanding of the principles and capabilities of
swarm simulations as it enables a hands-on approach
where the students can immediately experience the effects
upon changing parameters. Throughout the course, most
of the students kept working solely with the standalone
GUI application and did not consider to modify the simu-
lations more thoroughly on a lower level of abstraction.
They rather focused on the design of their audiovisual
Max/MSP patches and would only return to experimen-
tation with the swarm simulation itself when their envi-
sioned result could not be achieved by modifications to
those patches alone. It remains to be seen whether a pro-
longed use of the simulation tools will lead the students
to integrate swarm simulation into their works on a more
fundamental level.

As for the authors themselves, the swarm simulation
tools have proven to be extremely inspiring and useful
both for the realization of musical and artistic works. The
tools’ flexibility has allowed us to transfer a wide variety
of artistic and musical ideas into swarm based approaches.
Furthermore, their OSC based real time configuration and
control capabilities has allowed us to creatively exploit the
swarms’ high level of responsiveness both in the creation
process and for the final performance and exhibition sit-
uations. In their current state, the simulation tools exten-
sively support the manual design and refinement of swarm
simulations and their communication with musical and vi-

sual processes. However they do not provide functional-
ity for automated forms of configuration and modification
via mechanisms of adaptation such as evolution or learn-
ing. Also, the tools fall somewhat short in the creation of
simulations that gradually change over extended periods
of time and thereby provide the opportunity to experiment
with emergent macro scale structures in musical composi-
tions and visual designs. Accordingly, we plan to include
adaptive mechanisms in future versions of the simulation
tools.

6. REFERENCES

[1] http://swarms.cc.

[2] D. Bisig and M. Neukom, “Swarm based computer
music - towards a repertory of strategies,” in Pro-
ceedings of the Generative Art Conference, Milano,
Italy, 2008.

[3] D. Bisig, M. Neukom, and J. Flury, “Interactive
swarm orchestra - a generic programming environ-
ment for swarm based computer music,” in Proceed-
ings of the International Computer Music Confer-
ence, Belfast, Ireland, 2008.

[4] D. Bisig, J. Schacher, and M. Neukom, “Flowspace
– a hybrid ecosystem,” in Proceedings of the New
Interfaces for Musical Expression Conference, Oslo,
Norway, 2011.

[5] D. Bisig and T. Unemi, “Swarms on stage - swarm
simulations for dance performance,” in Proceedings
of the Generative Art Conference, Milano, Italy,
2009.

[6] ——, “Cycles - blending natural and artificial prop-
erties in a generative artwork,” in Proceedings of the
Generative Art Conference, Milano, Italy, 2010.

[7] T. Blackwell and P. Bentley, “Improvised music with
swarms,” in Proceedings of the 2002 Congress on
Evolutionary Computation, 2002.

[8] J. E. Boyd, G. Hushlak, and C. J. Jacob, “Swarmart:
interactive art from swarm intelligence,” in Proceed-
ings of the 12th annual ACM international confer-
ence on Multimedia, 2004.

[9] J. Schacher, D. Bisig, and M. Neukom, “Composing
with swarm algorithms - creating interactive audio-
visual pieces using flocking behavior,” in Proceed-
ings of the International Computer Music Confer-
ence, Huddersfield, England, 2011.

[10] D. Shiffman, “Swarm,” SIGGRAPH emerging tech-
nologies exhibition, 2004.

[11] R. Vitorino, “Self-organizing the abstract: Canvas as
a swarm habitat for collective memory, perception
and cooperative distributed creativity,” CoRR, 2004.
[Online]. Available: http://alfa.ist.utl.pt/∼cvrm/staff/
vramos/Artsbot.html

http://swarms.cc
http://alfa.ist.utl.pt/~cvrm/staff/vramos/Artsbot.html
http://alfa.ist.utl.pt/~cvrm/staff/vramos/Artsbot.html

	1 Introduction
	2 Technical Description
	2.1 Simulation
	2.2 Control and Communication
	2.3 GUI based Control

	3 Levels of Abstraction
	4 Application Scenarios
	4.1 Teaching
	4.2 Composition
	4.3 Installation

	5 Results and Conclusions
	6 References

