

University of Zurich
Department of Informatics

Spatial Structures and Multidimen-
sional Data.

Semester Thesis in Informatics

submitted by

Florian Spöring
Zürich, Switzerland

Student ID: 01-450-030

Supervisor: Daniel Bisig, Jonas Bösch
Date of Submission: August 29th, 2008

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

S
E

M
E

S
T

E
R

 T
H

E
S

IS

 -

 V

is
u

a
liz

a
ti
o

n
 a

n
d

 M
u

lt
iM

e
d

ia
 L

a
b
,

P
ro

f.
 D

r.
 R

e
n

a
to

 P
a

ja
ro

la

Table of content
1 Introduction 3

2. Fundamentals 4

2.1. Introduction to space partitioning 4

2.2. Description of ISO 5

2.2.1 Introduction to ISO – What is it? 5

2.2.2. Analysis of ISO Space 6

3. More detailed description of individual Space Partitioning
techniques 10

3.1. Fixed Grid 10

3.1.1 Insertion 11

3.1.2. Deletion 12

3.2. Quadtree 12

3.2.1. Search 14

3.2.2. Insertion 14

3.2.3. Deletion 15

3.2.4. Comparison between point- and pr quadtree 16

3.3. K-d trees 16

3.3.1. Point K-d Tree 16

3.3.2. Insertion 17

3.3.3. Deletion 17

3.3.4. Search 19

3.3.5. PR K-d tree 20

3.4 Comparison between quad- and K-d tree 20

4. Implementation Procedure 21

4.1. Fixed Grid 21

4.2. Quad tree 22

4.3. PR K-d tree 22

5. Results 24

Bibliography 25

1 Introduction
Since the ISO Framework was built and released the performance of
it was quite limited. Although there was sufficient effort put into
choosing a fast and open enough space partitioning technique which
meets the requirements, the outcome was still quite limited. Because
the whole ISO Framework is quite generic it is not possible to use
specialized partitioning techniques which focus strongly lies on using
inherent properties of the system to speed up the application and
lessen the use of resources.

Because the goal of this application is to produce music, there is a
need for a high number of dimensions which are representing proper-
ties of music like sequence, rhythm and other things. The other re-
quirement needed is a high number of agents, because these agents
are simulating the relations between these properties. Thus a high
number of dimensions and a high number of agents are leading to a
highly complex structure with a huge amount of calculating.

One goal by the creation of the ISO Framework was to build some-
thing highly customizable. Therefore the initial space partitioning
structure was the use of an n-tree, which is applicable for any num-
ber of dimensions. The drawback of the chosen algorithm is that it is
fairly time and resource consuming in building up and in updating.
This lead to the fact, that the allowed number of participating agents
is quite limited.

To overcome this limitations there are several assignments. As first,
we introduce a simple fixed grid partitioning technique. This imple-
mentation should be used if not a big number of dimensions have to
be simulated. By using this method, we should have a super fast al-
gorithm for simulating a big number of agents. Another goal of this
algorithm is to get in touch with the ISO Framework and learn how to
use it.

A second assignment is to do a literature research for other useful
space partitioning techniques and to evaluate their applicability for
the ISO Framework.

2. Fundamentals

2.1. Introduction to space partitioning

In many applications it is necessary to deal with multidimensional
data. That could be the case with Database Management System or
with computer graphics or many others.

“These points can represent locations and objects in space, as well
as more general records. […] Such records arise in database man-
agement systems and can be treated as points in multidimensional
space albeit the different dimensions have different type units.”
(Samet 2006, 1)

Therefore it is crucial to choose an appropriate data structure to deal
with these data. By carefully choosing the best matching data struc-
ture it is possible to save a lot of resources. May it be time or memo-
ry or both at the same time.

By using the term multidimensional data one usually speaks about a
collection of points in higher dimensional space. These points
represent data with as many parameters as there are dimensions.
Possible points are for example data records in a database. These
records have different attributes. For example if we have a look at a
person record, a record can have attributes like first name, last
name, address, a birthday and a social id. This record would be
stored in a 5 dimensional space, because it has 5 different attributes.

Why it becomes important to choose an appropriate data structure to
deal with multidimensional data is because an application usually has
to manipulate: to find, insert and delete this data.

“Bereits im täglichen Leben machen wir aber die Erfahrung, dass die
richtige Organisationsform für eine Menge von Daten und damit die
richtige Datenstrukturwahl ganz erheblichen Einfluss darauf hat, wie
effizient sich bestimmte Operationen für die Daten ausführen lassen.”
(P.Widmayer 2002, 15)

Depending when and how often these operations take place, a data
structure will be more suitable than another one. For example if we
consider static data we just have to build up the whole structure
once. Therefore we can choose a data structure which is costly by
creating, but very cheap for searching a particular data set or a range
of data sets. On the other hand, if data is dynamic and chances a lot
we maybe need to use a structure which is much cheaper to build up
and insert new data, but also slower in finding data.

If one deals with spatial data a big class of data structures is based
on space partitioning techniques. Space partitioning is done by divi-

sion of space into two or more subsets. It divides the space into non
overlapping regions. This process is repeated until every single data
point lies in exactly one region and no other data point occupies the
same region. Therefore, after partition the space, one can identify
every data point by its region the point occupies.

By applying the same method recursively, a space partitioning tech-
nique leads to a hierarchical system in which the outcome of it – the
created regions - can be represented in a Tree.

2.2. Description of ISO
To get in touch with ISO, I will firstly present an overview what the
ISO Framework is and what it does. After building up the basic know-
ledge about ISO we begin in analyzing how ISO Space is built. In
that chapter we make an in depth image of what the requirements
are, what objects are involved, what space partitioning techniques
are used and all other important facts one needs to know about it.

2.2.1 Introduction to ISO – What is it?
ISO is an abbreviation and stands for Interactive Swarm Orchestra.
As the name is saying, the core business of ISO is a piece of soft-
ware which is there to create music – if one is willing to say to com-
pose music. Music in that context shouldn’t be created according to
how music used to be composed, but it should be a continuous
process of creating music on the fly by reacting to changes in the
environment.

“The ISO project is a manifestation of our belief, that practical and
conceptual ideas from Artificial Live (ALife) provide an excellent
foundation towards the establishment of a coherent approach to sev-
eral important aspects of computer music (sound synthesis, composi-
tion and interaction). Our approach employs a generic swarm simula-
tion as intermediary between musician(s), sound generation and
acoustic projection. It is the simulated agents’ behaviors that
affect the mapping of the performer’s activities into musical structure
and its timbral, temporal and spatial development. We intend to shift
the creative focus of a musician’s work towards the design of proper-
ties, behaviors and interrelationships among agents and their musical
dependencies.“
(Daniel Bisig, Interactive Swarm Orchestra, 3)

A possible application for example would be that a region is observed
by video cameras. The cam is passing its data to a tracking device,
which is extracting motion information out of these pictures. These
motion information then acts as input to influence the way how the
music is created in background through ISO.

ISO consists of 3 main parts. First we have ISO Synth which is re-
sponsible for creating and manipulating sound. This is a synthetic
device to alter sounds in a number of ways. There are different units,

all of them having different properties and capabilities. By combining
these units one can generate new sounds. But because it is in the
nature of units that once two or more of them are connected to each
other, they just keep doing what they are until they are released.
Therefore, beside the units and basic functionality for music synthe-
sis, there are Events. Events are metaphorically speaking action
messenger sent to notify a unit at a distinct time step with a mes-
sage. By using these Events one can alter and control these units.

Second, we have ISO Tracker which is responsible to track motion
and pass the extracted information to the ISO Flock application. In
these classes beside figuring as input to the agents, one also can
specify special conditions under which Events are generated to influ-
ence Agents additional.

The last fundamental ISO Flock class deals with spatial calculations.
This space class contains spatial partition algorithms for the calcula-
tion of Euclidian distances among parameters and thereby manages
their neighborhood relationships.

“The main non-generic aspect of this library concerns its focus on
simulating large numbers of agents each of which possesses a very
simple morphology.”
(Daniel Bisig, Interactive Swarm Orchestra, 6)

The generic swarm library is the core piece of ISO where the most
implementation effort was put in. In the ISO Flock part the simulating
of the swarms is done. These swarms can influence each other and
have behavior allocated to them. Due to these behaviors these
swarms are reacting and creating Events to control the music which
is generated.
One important concept to speak about is the agent which a swarm
consists of. An agent is a labeled container for parameters and be-
haviors. By adding parameters and behaviors it is defined how an
agent updates itself. A behavior defines a functional relationship
among parameters. If a behavior is executed the agent updates its
state according to its Input and the influence of its neighbors which
are present in the neighbor group. All agents are updated in parallel
thus the order in which they are updated doesn’t play a role. Beside
the behaviors, parameters of an agent can also be changed through
Events.

2.2.2. Analysis of ISO Space
Since there exist almost no documentation about what the different
classes are representing, I try to give a short overview about what
the most important classes are doing. All information given here re-
fers to the official documentation which can be accessed through
http://i-s-o.ch/doc/index.html .

http://i-s-o.ch/doc/index.html

The Space class is spanning up a space to simulate swarms for dif-
ferent parameters. A space can contain one or multiple swarms.
These swarms are built up by agents.

An agent is a labeled container for parameters and behaviors. Every
parameter is expressed through a space object which by itself has a
position in space and a value, which expresses the parameter value
for the moment. A space-object can have neighbors.

These neighbors have designated properties and are managed in
neighbor-groups. Neighbor groups are built to manage and maintain
Euclidian distance between two neighbors. This information is used
later on to trigger certain behavior. To manage distance calculation
between space object the ISO Framework provides 3 different dis-
tance calculation types. To use one of them, you pick the appropriate
one through the neighbor group alg class.

Whenever a space object has to be inserted into a neighbor group a
space proxy object is created and inserted into the neighbor group.
This space proxy object is needed, since a space object can be
present in more than one neighbor group.

As mentioned before an agent consists of parameters and behaviors
whereas a parameter can express something like force or velocity
and a behavior is triggered when a certain condition is satisfied e.g. a
certain velocity is hit.

A behavior distinguishes between input parameters, internal parame-
ters and output parameters. If a behavior is executed, it reads from
its input parameter, its internal parameters as well as neighbor
groups and writes the outcome to its output parameters. The output
is buffered and updated at once for all agents, to prevent the order in
which the output parameters are calculated are affecting the out-
come.

A swarm itself is built of a group of agents with the same structure.
This structure is built up of behaviors and parameter. Every agent in
a swarm has the same parameter and behaviors with of course dif-
ferent values for each of them. Important to know is that it is possible
to allocate parameters and behaviors to a swarm as well. In fact, a
swarm can be treated as if it were an individual agent!

Figure 1

Relationship between agents and swarm(Source: http://i-s-o.ch/doc/index.html)

In the ISO Space there exist already a number of different spaces for
different applications. Right now there is implemented a grid-space, a
point-space and a shape-space.

“In its current implementation, the ISO Flock library provides a group
of specialized spaces and behaviors that inherit from the generic
base classes. The “point space” class manages distance calculations
among point like spatial objects (i.e. parameters) via a quad tree, oc
tree or higher dimensional space partitioning algorithm. The “shape
space” class implements an R-Tree algorithm for the calculation of
distances among objects in space that possess a shape (as opposed
to point like objects). This allows agents to move along splines or on
the surface of triangulated meshes. Such spatial objects can be em-
ployed to structure the environment within which agents exist. An
example application transforms the tracked outline of people into a
spline that serves as movement guide for agents. For a similar pur-
pose another type of space manages the distribution of vectors on an
n-dimensional regular grid. Such grids can serve for example as stat-
ic or dynamic force fields and propel or slow down agents as they
move through space. Another example application updates such a
force field based on tracked visitor motion.”
(Daniel Bisig, I-S-O Documentation)

Because neighbor groups have to deal with distance between
agents, at every step of the simulation it is necessary to build up the
whole structure again. For every Agent the neighborhood calculation
has to be done.

http://i-s-o.ch/doc/index.html

As we already mentioned, the point-space manages neighborhood
calculations, by calculating the Euclidian distance. The existing point
space spatial partitioning algorithm is rather slow because the neigh-
borhood calculation within a multidimensional n-Tree is very time
consuming. This limits the performance of the ISO Flock to a maxi-
mum number of agents depending on the number of dimension. To
extend this number, we try to implement faster space partitioning
techniques, which we are discussing in detail in the next chapter.

3. More detailed description of individual Space Parti-
tioning techniques

Note: For simplicity reasons, we discuss all the trees in 2 dimensions
with the following sample data

NAME X Y

Chicago 35 41

Mobile 52 10

Toronto 62 77

Buffalo 82 65

Denver 5 45

Omaha 27 35

Atlanta 85 15

Miami 90 5
Figure 2

Sample data for the different spatial partitioning algorithms

3.1. Fixed Grid
As a first improvement for performance there is a simple fixed grid
implementation. A fixed grid method partitions the space into rectan-
gular cells by overlaying it with a grid. Each cell is of a fixed size,
whereas each dimension can have its own size. Beside the fix size, a
cell contains a pointer to another structure (e.g. a linked list) which
contains the set of agents which are present at a time step within this
cell. The grid itself has to implement a method which determines to
which cell an object is linked to. Usually the access structure to
access the cells is a d-dimensional array or a tree where each leaf
represents a cell.

There are 2 ways to build up a fixed grid. One either can subdivide
the space into equal sized grid cells, or one can subdivide it at arbi-
trary positions which are dependent on the underlying data. The dif-
ference between these two types is that in the first the access struc-
ture is quite easy whereas in the second type the access is quite dif-
ficult to realize since the data of the borders for the cell is different
and has to be stored explicitly for every cell.
The advantage of an array access structure lies within the fact, that
every cell is very easy to address and to access.

Building up such a fixed grid is quite fast, since one can calculate the
assigned cell directly out of the information which is present in the
object and does not have to check the whole structure. Thus, since
every object should be present in the grid has to be inserted into it
and assuming that there are N objects the needed time to build up
the structure is O(N).

3.1.1 Insertion
To insert an object, one has to compute the cell index of the as-
signed cell. This is done by using the fact that the cell-size is known
and that we know the position of the object which has to be inserted.
Therefore insertion takes a constant amount of time an lies in O(k)
where k addresses the constant computation steps one has to com-
plete.

Toronto

Buffalo

Atlanta

Miami

Mobile

Chicago
Denver

Omaha

Figure 3

A fixed grid representation of the sample data in Figure 2

3.1.2. Deletion
Deleting an object is done in a similar fashion. As first, one again has
to calculate the assigned cell through inherent data of the object. Af-
ter the cell is known, depending on which data structure is used to
store the present object of a cell, deleting the object takes as most
O(k + m) time, whereas m designate the number of neighbor object
in the same cell.

The use of an array access structure is fine as long as static data is
concerned. But it has its drawback with dynamic data. If one is deal-
ing with dynamic data the possibility gets bigger that a cell becomes
too crowded while others stay empty and one looses the advantage
of the easy access, because you need much calculation time to find
the wanted object inside the crowded cell. These drawbacks are ad-
dressed with the introduction of variable sized cells.

3.2. Quadtree
While we were dealing in the case of a fixed grid with equally sized
spatial structures which can produce a large number of empty cells in
a dynamic environment, we are now introducing a structure which
merges adjacent empty grid cells to larger ones. The resulting reduc-
tion of the number of cells results in a decrease of search time. If a
cell gets too crowded, there will be a split and new cells with smaller
number of objects are introduced.

A quadtree is a tree access structure on a grid. Its basic idea is to
have a fast and easy way to adjust access structure which divides
the cells the way that every cell only contains a maximal number of
objects. If a cell is full but still a new object is added, the space will
be further subdivided. If a cell becomes empty, the cell tries to merge
with neighboring empty cells. The subdivision divides a region into 4
sub-regions, a northwest, northeast, southwest and southeast qua-
drant thus the name quadtree. A quadtree therefore is an access
structure for 2 dimensional data, since the division takes place along
2 dimensions.

In general there are 2 types of quadtrees. A first type of a quadtree is
the Point quadtree which is subdividing the space according to data
point values.

In the point quadtree of course the shape of the resulting tree de-
pends on the sequence in which the objects are inserted into the
tree.

The second type is called trie-based and decomposes the space into
region based on the distribution of the data points. Trie is an abbrevi-
ation for information retrieval which shows that these particular trees
are well especially well suited for search procedures.

Toronto Buffalo Denver Chicago Omaha Atlanta Mobile Miami

Toronto

Buffalo

Atlanta

Miami

Mobile

Chicago
Denver

Omaha

Figure 4

A point quad tree and the associated space partitioning of the sample data of Figure 2

(Source Samet, 2006, 28)

3.2.1. Search

quadtrees are especially well suited for applications that involve prox-
imity search. Typically these searches are of the type like search all
cities given a data point which are lying within a certain search ra-
dius. The efficiency of such searches in Quad-trees is gained by the
fact that with every search step one can prune a big region and
therefore a lot of data records don’t need to be examined. Since
every object belongs to exactly one region all the other sub trees be-
longing to the other regions can be pruned away

3.2.2. Insertion
Inserting a node in a Quad-tree is quite simple. Since each record r
has the key values (a, b) we have to search first for the value pair (a,
b). If the tree is empty, we create a new node for the record. If not,
we first search for the node h with values (a, b). If a node is found,

Toronto

Buffalo

Atlanta

Miami

Mobile

Chica-

go

Denver

Omaha

A

B

C D

E

F

A

B C D

E F

Figure 5

A point-region quad tree and the associated space partitioning of the sample data of

Figure 2

(Source Samet 2006, 34)

we replace the node with the new record r. If the node is not found,
we are getting a nil- child node in the 2 dimensional space of the type
northwest, northeast, southwest or southeast. The only difference
from a binary search tree is the need to perform at each node a four-
way comparison within the tree. This four-way comparison is needed
to distinguish in which quadrant the new node lies.

In the case of a trie-based quad-tree the insertion procedure is
slightly different, because all the regions resulting from the subdivi-
sion process have to be of equal size. If the domain of the data
points is discrete and we take every data point as a nonzero element,
we have an image closely related to a matrix. Therefore this ap-
proach is called the MX quadtree. The difference in the inserting pro-
cedure is that if the search stops at a nil pointer the space is repeat-
edly subdivided until it is a 1 x 1 square. The length of that square is
given by the number of subdivision and the domain which is span-
ning the space.

If the underlying space is not discrete and finite, this approach is not
feasible anymore because the minimal number of separation be-
tween the data points is unknown. Therefore it is impossible to sub-
divide the spanning space into 1 x 1 squares. This leads to an alter-
native adaption of the region quadtree to point data. A leaf node is
now corresponding to a region with at most one data point allocated
to it. This approach is called PR quadtree whereas the P stands for
point and the R stands for region. The insert procedure is now
changed as follows. For a data point r we are searching for the re-
gion in which the data point belongs. If the region is already occupied
by another data point s with different coordinate values, we must
start splitting the space repeatedly until r and s no longer occupy the
same block.

3.2.3. Deletion
The simplest way to delete a node is by reinsert the whole sub tree
from the deleted node on. Of course this is very costly and time con-
suming if the deleted node is not a leaf node. There exists another
way to delete a node and rearrange the tree, but since the deletion
method is not of a particular interest the interesting reader is referred
to Hanan Samet’s book Multidimensional and metric data structures
page 31.

The delete procedure in a trie-based quadtree (MX- or PR- quad
tree) is much simpler. Since here, data is always stored in a leave
node. We simply have to delete that leaf node, and therefore there is
no need to rearrange the tree. However, if a leaf node is deleted, we
maybe have generated a lot of empty cells in both cases. If this is the
case, we have to collapse cells. Collapsing cells means to merge
empty cells until the state of a tree is again a valid one.

3.2.4. Comparison between point- and pr quadtree
Point quadtree Point region quadtree

Subdivision based on point location Subdivision into regular decomposi-

tion

Data points stored within the tree Data points stored in leaf nodes

Deletion needs to update the tree Simple leaf node deletion

No boundary Fixed boundary

Shape and size is sensitive to the

order of input

Size and shape independent of order

in which the nodes are inserted

Coordinate information have to be

stored within every data point

No need to store coordinates

3.3. K-d trees
For increasing dimensionality of the underlying space, each level of
decomposing of the quad-tree results in many new cells. This results
in a Fan out of around 2d with d as the number of dimensions. This is
not the case when using a variant of a K-d tree. Here, the space is
partitioned at every level of the tree on the basis of just one attribute.
In other words, at each level of the tree just one attribute value is
tested instead of all attributes in the case of a quad-tree.

By restricting the number of tests at each level, we gain a lot. First,
the overall resulting size of a tree is much smaller, because for every
node, at most one additional split is necessary. This makes the algo-
rithm a lot easier because at each level we only have two options to
choose from, since the underlying space is divided into only two
parts. A second advantage is that at each tree level only one test has
to be done, instead of d in the case of a quad-tree. This fact alone
speeds up the search procedure quite a lot. As a last point worth
mentioning, one data structure can be used to represent a node for
all values of d, since we don’t need to care about what region we are
processing right now.

But all these advantages mentioned do not come for free. By replac-
ing all tests of the attributes by one test, we are creating a structure
which becomes highly sensitive to the order in which the data points
are inserted. Because only one attribute is tested at each level, the
former parallel procedure of testing for attributes becomes a serial
one.

3.3.1. Point K-d Tree
Although there are many variations of the point k-d tree whose exact
structure is depending on details, we focus on the most common va-
riant. Here the k-d tree partitions the underlying space at the data
points and cycles through the different axes in a predefined and con-
stant order. For simplicity reason, we again discuss the case of a two
dimensional k-d tree. At each even node level we test along the x

axis, at each uneven node we test along the y axis. If we are testing
a data point P, then all data point with an x coordinate value less
than P are in the left child of P and all those with a value equal or
bigger than P are in the right child of P at an even level. Similar con-
vention holds for P at uneven level.

3.3.2. Insertion
With that in mind, inserting records is very simple. First, if the tree is
empty, we allocate a new node containing the data point r which we
would like to store and we return the tree with r as its root node. If the
tree is not empty, we are searching for a node h with a record having
key values (a, b). If h exists, we replace the existing record asso-
ciated with h. If the search reaches a nil node, we allocate a new
node t containing r and make t a child of node c. It is important to
understand, that at each node level we have to store what test we
need to test for. This procedure is basically the same as for a quad-
tree or a binary tree.

3.3.3. Deletion
As one can observe that not every sub tree of a k-d tree is itself a k-d
tree, the deletion of a node becomes more complex than it is for bi-
nary search trees. We can not just simply remove a node and re-
place the node by the resulting sub tree since the sub tree itself can
harm the integrity of a k-d tree. This is, because sub tree values
might not have the same relative relationship to their new depths as
they had before.

(10,10)

(20,3)

(25,5) (25,1)

(20,3)

(25,5) (25,1)

Chicago

Mobile

Denver

Omaha

Miami

Toronto

Buffalo

Atlanta

Chicago

Mobile Denver

Oma-

ha

Mia-

mi

Toronto

Buffalo

Atlanta

Figure 6

Point k-d tree by inserting Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta and

Miamy. The tree on the right is created with reverse inserting order.

Figure 7

a) Example of a two-dimensional k-d tree whose (b) right child is not a k-d tree

(Source Samet 2006, 52)

(a,b) (c,d)

(c,d)

But still we can use a recursive process for deleting nodes in a k-d
tree. This procedure goes as follows: If both sub trees of the node we
wish to delete are empty, we replace the node by an empty tree. If
that’s not the case, we search for a suitable replacement node in one
of its subtrees and recursively delete that node.

This procedure works because if we are looking at an even node that
node is according to our definition an x-discriminator with the values
(a,b).Now for every node of the left subtree got an x coordinate value
smaller than a. Every node in the right subtree has an x coordinate
equal or greater than a. It seems now as if we have a choice to re-
place (a,b) with the right subtree with the maximum x coordinate val-
ue, or to replace (a,b) with the minimal x coordinate value of the left
subtree.

This is not the case. If we decide to replace (a,b) by its right subtree
(c,d) and there exists another subtree with value (c,h) our definition
of the tree is harmed. Therefore we have to look for the substitute
always in the left subtree.

This leads us to the question what
to do if the left sub-tree of a delet-
ing node is empty. Since replacing
the deleted node with a node of
the right sub tree the integrity of
our tree could be injured. To solve
this problem one searches the
right sub-tree for the smallest
coordinate value of the deleted
category (c,d) , exchange the left
and the right subtree and replace
the deleted node (a,b) with the
found node and recursively apply
the deletion procedure to the found
node (c,d).

As an example of the deletion process, consider the tree of Figure 10.
By assuming that A at (20, 20) is an x-discriminator, we see that C at
(25,50) has the minimum value of the right subtree. Therefore, we
replace A with C and continue with the deleting procedure at the for-
mer C node.

Since C’s right subtree is empty, we have to search its left subtree for
the node with a minimum value of a y coordinate. Thus D with the
minimal y coordinate is attached as right subtree, replaces C’s former
position and is then deleted. Because D was an x-discriminator, we

Figure 8a) Example k-d tre and b) the result

of deleting (a,b) from it

(Source Samet 2006, 53)

replace it by the node in its right subtree having a minimum x coordi-
nate value.

H satisfies this minimum value condition and therefore is moved up in
the tree.

3.3.4. Search
Like a quad tree, a k-d tree is particularly useful in applications in-
volving search. While seeking all nodes within a specified distance of
a given point, a big amount of search can be pruned, which other-
wise would be required. For the following discussion, we are inter-
ested in all points having a Euclidean distance from a given point
less or equal to a search radius r.

From the assignment we know that for any point of interest the equa-

tion 𝑟2 ≥ (𝑎 − 𝑥)2 + (𝑏 − 𝑥)2 has to be satisfied, where r nouns the
search radius, (a, b) the given point and (x, y) the point of interest.
This equation leads us to the following properties.

C (25.50)

E (30,45)
G (55,40)

H (45,35)

I (50,30)

F (30,35)

B (10,30)

A (20,20)
D (35,25) D (35,25)

G (55,40)

H (45,35)

E (30,45)
C (25.50)

B (10,30)

F (30,35)

?

B C

D

E

F

G

H

I

B B B B

C C C C

D

D D D

E E E E

F F F F

I I I

I H H

H

G G G G

?

?

?

H

I (50,30)

Figure 9

Example illustrating deletion in k-d trees where "?" indicates the node being deleted: (a) the original k-

d tree, (b-f) successive steps in deleting node A, (g) the final k-d tree.

Source (Samet 2006, 54)

Indicated through that equation we know that we are observing a cir-
cular region. The minimum x and y coordinate values of a node in this
circle cannot be less than 𝑎 − 𝑟 and 𝑏 − 𝑟, respectively. The same
property holds for the maximum coordinates but with changed sign.
Therefore at every node level (e, f) we compare this point with the
point 𝑎 − 𝑟, 𝑏 − 𝑟 . If the resulting point lies within the right subtree
we know that all data points in the right subtree have an Euclidean
distance bigger than r. At the same point we also compare the point
of interest (e, f) with the point (𝑎 + 𝑟, 𝑏 + 𝑟) if the resulting point lies in
the left subree we do not need to search further in that tree.

3.3.5. PR K-d tree
If we have a big number of data points, it takes a lot of resources to
build a point K-d tree, since in every node we need to store its loca-
tion. To save memory, in that case a method similar to a PR Quadt-
ree was developed. Like in the Quadtree case, the examined space
is not divided on the basis of a point location but the space is just
divided into halves. This is done recursively until every data point lies
in its own region. This halving process is done in the same manner
as a point k-d tree is built. The splitting is done by cycling through the
different axis in a random but constant order.

A big disadvantage in many PR K-d trees is that they start having
problems if the data points are not distributed uniformly. If many data
points are clustering together, a lot of splitting is required producing
many nodes and the resulting tree becomes unbalanced.

One Solution which is addressing that problem is to use buckets. A
bucket has a predefined size b and splitting only takes place if a
bucket is full, e.g. if a bucket contains already b data points. If a new
data point is going to be inserted in such a bucket, the space is split
again and the data points the bucket contained are distributed to the
newly build buckets according the PR K-d tree rule.

3.4 Comparison between quad- and K-d tree
Quadtree K-d tree

Test for every dimension at each

level

At each level only 1 dimension is

tested

Multitude of NIL links Only few NIL pointers

parallel Sequential process

Order in which the nodes are in-

serted does not influent shape and

size of tree

Sensitive to the order of inserting

nodes

4. Implementation Procedure

4.1. Fixed Grid
In order to realize this fixed grid, I created 2 classes. Classes
iso_space_point_space_grid and iso_space_point_space_grid cell. If
a fixed grid is initialized the size of the used array is calculated an
array with of fixed grid cells with the calculated size is created.

//calculate size of array (space)

 int tmpSize = 1;

 for(unsigned int i=0; i<pSubdivisionCount.dim(); i++){

 tmpSize *= mSubdivisionCount[i];

 }

 //create cell array

 mCells = QVector<FixedGridCell*>(tmpSize);

 for(unsigned int j= 0;j<tmpSize; j++){

 FixedGridCell tmpCell = FixedGridCell();

 mCells[j] = &tmpCell;

 }

The method updateSpaceStructure() is resetting the array to empty grid
cells. Method updateNeighbors() which usually is called after updating
the space structure then fills in all the space proxy objects.

To insert a space proxy object is easy. At first one has to check
whether or not it can have neighbors. If it can, one creates the space
proxy object as container for the space object. Then one has to de-
termine fixed grid cell, where you have to insert the space proxy ob-
ject.

To add neighbors, we implemented 2 different versions. A first very
fast but also a bit limited version accepts only space proxy objects as
neighbors which are lying in the same fixed grid cell. Since a cell can
contain only one or a few space proxy object there is the possibility
that our space proxy object doesn’t get a lot of influence trough other
neighbors, we give up most of the emergent properties of a swarm.

The second version we implement consists of a neighbor search
within a certain radius. This radius is variable, but constant during
runtime. Although the method addNeighbor() of the space-proxy-
object is checking the condition against that radius too, we check that
ourselves since we don’t need to add all possible neighbors but only
the one which are lying inside that radius. Although that check
against the radius is done twice it is still much faster than just trying
to insert all possible neighbors since to determine which other cells
lie inside the radius does not require a lot of time.

4.2. Quad tree
Since an n tree (a variant of a quad tree for any number of dimen-
sions) is already implemented, there is no need to implement this
again.

 4.3. PR K-d tree
For implementing a PR K-d tree we got the implementation by Jonas
Bösch. The tree itself uses actually only one class
iso_space_pr_kd_tree_node. Such a node has following interesting
members:

_parent; parent node if any

 _child_nodes[2]; its children if any

 _bucket; a bucket with a static capacity

 _split; the point where the next split will take place

 _axis; dimension which has to be split

 _aabb; the vectors spanning the actual region

 _bucket_capacity;

 _pool; a pool of pr kd tree nodes

 _bucket_pool; a pool of buckets

If a node is being created all of its properties are set to NULL and
remains out of any tree.

To insert a newly created node into a tree one has to call the insert
method of the root node, or the newly created node store that root as
root node. Calling the insert(point) method function as described in the
PR K-d tree discussion.

if (_has_children){

_child_nodes[find_child (point)]->insert (point);

}

The find_child(point) function returns 0 or 1 depending on if the point’s
position belongs to the left or the right subree.

find_child(point){
return (point->position().c[_axis] < _split[_axis]) ? 0 : 1;

}

As long as there are children, we travel trough the tree recursively by
calling the insert(point) method on the child spanning the space parti-
tion our space proxy object belongs until we find a leave node. After
the node is found, we are inserting the space proxy object into the
bucket list.

if (_bucket->size() == _bucket_capacity)

{

 split();

 _child_nodes[find_child (point)]->insert (point);

}

If the bucket list is full already, we split() the space again into two
halves otherwise we just configure the node the way that it now con-
tains our inserted space proxy object.

The split() function creates 2 childnodes by calling _create_child_nodes();

This method allocates memory for the new childnodes, and make
them accessible through the node property _child_nodes[0] ,

_child_nodes[1] respectively.
Then the new childnodes are configured. The region which they are
spanning now is set by the call of

_aabb.split_kd (_axis, _split[_axis], child0->_aabb, child1->_aabb);

 Followed by the call of to configure the rest of the properties

child0->_setup (this, 0); child1->_setup (this, 1);

After the children are set up correctly, we have to divide the bucket of
this node to the newly created child nodes. This is done by the call of
spill_bucket(); After that we do some clean up stuff because we don’t
need that bucket anymore since bucket are only used in leave nodes.
Calling _bucket_pool.destroy (_bucket);_bucket = 0; and we are done.

The spill_bucket() function distributes all space proxy objects contained
in a bucket by finding the appropriate node and inserting the space
proxy object.

for (; it != itend; ++it){

_child_nodes[find_child (*it)]->insert (*it);

}

Deletion a node is implemented too, but since we don’t care about
deleting a single node, I don’t discuss this here in detail. The interest-
ing reader can find the source code in the appendix.

For search queries we can recycle the find_child(point) method with a
fake point as described at here and recursively call that method until
a query returns a subtree which violates the search criteria.

5. Results
As first I would like to state, that the way how I was working on this
wasn’t particularly well suited. I didn’t had much time to work on it in
one bunch, so it took always a huge amount of time to get into it
again.

One thing which made the work much harder than it actually is was
the fact that almost no documentation exists. Although I had 2 or 3
meetings with Daniel Bisig who gave me an introduction to his code,
the possibility to think about a concept myself and then read the in-
formation again was missing. This made it quite hard to get into the
written source.

Many classes are named similar like GridSpace and SpaceGrid. This
is a source of confusions. The problem would be smaller if there
would be a comment of what the class is about and how it is used.

Generally, an overview of the different classes where it is explained
what a class represents and how the class is used is missing. This
makes it almost impossible to get the big picture. Even though the
source code itself isn’t that hard to read, it’s quite hard to figure out
how and for what the classes are used.

Maybe not everyone needs to see the big picture, but for me it is
quite important. By understanding the big picture, it is much easier to
find the different requirements. In the end, I just copied the point-
space class and checked that I had all the methods implemented as
they were implemented on the point space. I still cannot tell what
properties the space really needs to have.

Overall, the assignment was maybe a little too difficult for me. I
wasn’t familiar with C++ and the environment, and I don’t have a
suitable background for space partitioning data structures. All this
together made it quite time consuming and I did not proceed as fast
as I thought I would.

This is sad, since I actually didn’t had much time to develop my own
ideas. I could not contribute as much as I wanted to the project.

Bibliography
Daniel Bisig, Martin Neukom, John Flury. „an artificial life approach to

computer music.―

http://bitingbit.org/publications/pdf/iso_icmc_demo_2008.pdf (Zugriff am

27. 08 2008).

—. „Interactive Swarm Orchestra.―

http://bitingbit.org/publications/pdf/ISO_GA_2007.pdf (Zugriff am 24. 08

2008).

—. I-S-O Documentation. http://i-s-o.ch/doc/index.html (Zugriff am 22. 08

2008).

Mehlhorn, K. Data structures and algorithms, Vol. 3: Multidimensional

searching and computational geometry. Berlin: Springer, 1984.

P.Widmayer, T.Ottmann /. Algorithmen und Datenstrukturen. Heidelberg

Berlin: Spektrum Akademischer Verlag, 2002.

Samet, Hanan. Foundations of Multidimensional and Metric Data

Structures. University of Maryland, College Park: Morgan Kaufmann, 2006.

TABLE OF FIGURES
FIGURE 1 RELATIONSHIP BETWEEN AGENTS AND SWARM(SOURCE: HTTP://I-S-

O.CH/DOC/INDEX.HTML) 8

FIGURE 2 SAMPLE DATA FOR THE DIFFERENT SPATIAL PARTITIONING ALGORITHMS 10

FIGURE 3 A FIXED GRID REPRESENTATION OF THE SAMPLE DATA IN FIGURE 2 11

FIGURE 4 A POINT QUAD TREE AND THE ASSOCIATED SPACE PARTITIONING OF THE

SAMPLE DATA OF FIGURE 2 (SOURCE SAMET, 2006, 28) 13

FIGURE 5 A POINT-REGION QUAD TREE AND THE ASSOCIATED SPACE PARTITIONING OF

THE SAMPLE DATA OF FIGURE 2 (SOURCE SAMET 2006, 34) 14

FIGURE 6 POINT K-D TREE BY INSERTING CHICAGO, MOBILE, TORONTO, BUFFALO,

DENVER, OMAHA, ATLANTA AND MIAMY. THE TREE ON THE RIGHT IS CREATED
WITH REVERSE INSERTING ORDER. 17

FIGURE 7 A) EXAMPLE OF A TWO-DIMENSIONAL K-D TREE WHOSE (B) RIGHT CHILD IS NOT

A K-D TREE (SOURCE SAMET 2006, 52) 17

FIGURE 8A) EXAMPLE K-D TRE AND B) THE RESULT OF DELETING (A,B) FROM IT (SOURCE

SAMET 2006, 53) 18

FIGURE 9 EXAMPLE ILLUSTRATING DELETION IN K-D TREES WHERE "?" INDICATES THE

NODE BEING DELETED: (A) THE ORIGINAL K-D TREE, (B-F) SUCCESSIVE STEPS IN
DELETING NODE A, (G) THE FINAL K-D TREE. SOURCE (SAMET 2006, 54) 19

Semester Thesis
Communication Systems Group
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://csg.ifi.unizh.ch

file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759701
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759702
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759702
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759703
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759703
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759704
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759704
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759704
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759705
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759705
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759706
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759706
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759707
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759707
file:///C:\Users\spf\Documents\Studium\SS08\Semester_Thesis.docx%23_Toc207759707

Appendix

/*

 * iso_space_pk_kd_tree_node.h

 * iso_space

 *

 * Created by iso on 7/1/08.

 * Copyright 2008 __MyCompanyName__. All rights reserved.

 *

 */

#ifndef _iso_space_pr_kd_tree_node_h_

#define _iso_space_pr_kd_tree_node_h_

#include <boost/pool/object_pool.hpp>

#include "iso_space_proxy_object.h"

#include "aabb.h"

#include <QVector>

#include <deque>

#include <list>

namespace iso

{

#define TREE_STATS

namespace space

{

class PrKdTreeNode

{

public:

 typedef std::deque< SpaceProxyObject* > bucket;

 /**

 \brief creates a tree node consisting with no parent, no children, marked as death

and an emtpy bucket

 */

 PrKdTreeNode();

 ~PrKdTreeNode();

 /**

 \brief insert a space proxy object into the tree.

 \\ 1. searches the tree according to the Space Proxy Object Position

 \\ 2. adds the Space Proxy Object to the matching node if there is space in

bucketlist

 \\ 3. creates a split if it is neccesary

 */

 void insert (SpaceProxyObject* point);

 /**

 \brief divides the content of a bucket into the newly created childnodes.

 */

 void remove (SpaceProxyObject* point);

 void spill_bucket(); // sort bucket into child nodes

 /**

 \brief splits the representated region along an axis into 2 region and creates the

new children and set them up

 */

 void split();

 // get index of child in which the point belongs

 int find_child (SpaceProxyObject* point) const;

 inline PrKdTreeNode* get_parent() const;

 inline PrKdTreeNode* get_child (int num) const;

// child nodes queries

 inline bool has_children() const;

 inline bool is_leaf() const;

// payload queries

 inline int get_size() const;

 inline bool is_empty() const;

// bucket access

 inline bucket& get_bucket();

 inline const bucket& get_bucket() const;

 static void set_bucket_capacity (const int capacity);

 static inline const int get_bucket_capacity();

 friend std::ostream& operator<< (std::ostream& o, const PrKdTreeNode& node)

 {

 o << "pr_kd_tree_node\n"

 << " bucket size: " << ((node._bucket) ? node._bucket->size() : 0)

 << "\n"

 << " " << node._aabb;

 if (node.has_children())

 {

 o << "child0 :\n " << *node._child_nodes[0]

 << "child1 :\n " << *node._child_nodes[1];

 }

 o << std::endl;

 return o;

 }

#ifdef TREE_STATS

 const int get_load_count();

 const int get_node_count();

#endif

 inline const math::Vector<float> get_split() const;

 inline const int get_axis() const;

 inline const aabb2f& get_aabb() const;

 inline aabb2f& get_aabb();

 inline void set_split (const math::Vector<float>& split_);

 inline void set_axis (const int axis_);

 inline void set_aabb (const aabb2f& aabb_);

protected:

 /**

 \brief creates new childnodes and sets the children flag to true

 */

 void _create_child_nodes();

 void _destroy_child_nodes();

 /**

 \brief setup the node members (except _aabb)

 \param parent parent node of the newly built node

 \param pDim the number of

 */

 inline void _setup (PrKdTreeNode* parent, const unsigned int child_num);

 // check if this node is empty and all child nodes are empty

 bool _zombie_check();

 PrKdTreeNode* _parent;

 PrKdTreeNode* _child_nodes[2];

 uint64_t _path;

 bool _has_children;

 bool _dead;

 bucket* _bucket;

 math::Vector<float> _split; // the point where the next split will take place

 int _axis; //number of dimension which has to be partitioned

 aabb2f _aabb; // the vectors spanning the actual region

 static int _bucket_capacity;

 static boost::object_pool< PrKdTreeNode > _pool;

 static boost::object_pool< bucket > _bucket_pool;

 static const int _max_children;

#ifdef TREE_STATS

 static int _node_count;

 static int _load_count;

#endif

};//class PrKdTreeNode

inline PrKdTreeNode*

PrKdTreeNode::get_child (int num) const

{

 assert (num < 2);

 return _child_nodes[num];

}

inline PrKdTreeNode*

PrKdTreeNode::get_parent() const

{

 return _parent;

}

inline int

PrKdTreeNode::get_size() const

{

 return _bucket ? _bucket->size() : 0;

}

inline bool

PrKdTreeNode::is_empty() const

{

 return _bucket ? _bucket->size() : 0;

}

inline bool

PrKdTreeNode::is_leaf() const

{

 return !_has_children;

}

inline bool

PrKdTreeNode::has_children() const

{

 return _has_children;

}

inline PrKdTreeNode::bucket&

PrKdTreeNode::get_bucket()

{

 assert (_bucket);

 return *_bucket;

}

inline const PrKdTreeNode::bucket&

PrKdTreeNode::get_bucket() const

{

 assert (_bucket);

 return *_bucket;

}

inline void

PrKdTreeNode::set_bucket_capacity (int capacity)

{

 _bucket_capacity = capacity;

}

inline const int

PrKdTreeNode::get_bucket_capacity()

{

 return _bucket_capacity;

}

inline int

PrKdTreeNode::find_child (SpaceProxyObject* point) const

{

 assert (point);

 return (point->position().c[_axis] < _split[_axis]) ? 0 : 1;

}

inline const math::Vector<float>

PrKdTreeNode::get_split() const

{

 return _split;

}

inline void

PrKdTreeNode::set_split (const math::Vector<float>& split_)

{

 split = split;

}

inline const int

PrKdTreeNode::get_axis() const

{

 return _axis;

}

inline void

PrKdTreeNode::set_axis (const int axis)

{

 _axis = axis;

}

inline const aabb2f&

PrKdTreeNode::get_aabb() const

{

 return _aabb;

}

inline aabb2f&

PrKdTreeNode::get_aabb()

{

 return _aabb;

}

inline void

PrKdTreeNode::set_aabb (const aabb2f& aabb_)

{

 aabb = aabb;

}

inline void

PrKdTreeNode::_setup (PrKdTreeNode* parent, const unsigned int child_num)

{

 assert (parent);

 _parent = parent; // set parent

 memset (_child_nodes, 0, sizeof (void*) * 2); //create space for children

 _path = (_parent->_path << 1) | child_num; //set path to child

 _has_children = false;

 _dead = true;

 _split = _aabb.get_center();

 _axis = (_parent->_axis + 1) % 2; //TODO change to n dimensions!

 // _aabb -> already setup in split() of the parent

}

#ifdef TREE_STATS

inline const int

PrKdTreeNode::get_load_count()

{

 return _load_count;

}

inline const int

PrKdTreeNode::get_node_count()

{

 return _node_count;

}

#endif

}; // namespace space

}; // namespace iso

#endif

/*

 * iso_space_pk_kd_tree_node.cpp

 * iso_space

 *

 * Created by iso on 7/1/08.

 * Copyright 2008 __MyCompanyName__. All rights reserved.

 *

 */

#include "iso_space_pr_kd_tree_node.h"

using namespace iso;

using namespace iso::space;

// static members

boost::object_pool< PrKdTreeNode > PrKdTreeNode::_pool;

boost::object_pool< PrKdTreeNode::bucket > PrKdTreeNode::_bucket_pool;

int PrKdTreeNode::_bucket_capacity = 2;

const int PrKdTreeNode::_max_children = 2;

#ifdef TREE_STATS

 int PrKdTreeNode::_node_count = 0;

 int PrKdTreeNode::_load_count = 0;

#endif

PrKdTreeNode::PrKdTreeNode()

 : _parent (0)

 , _path (1)

 , _has_children (false)

 , _dead (true)

 , _bucket (_bucket_pool.construct())

{

 memset (_child_nodes, 0, sizeof (void*) * 2);

}

PrKdTreeNode::~PrKdTreeNode()

{

 if (_has_children)

 _destroy_child_nodes();

 if (_bucket)

 _bucket_pool.destroy (_bucket);

}

void

PrKdTreeNode::insert (SpaceProxyObject* point)

{

// if there are already children atached to this node, find the suitable place for the

new SpaceProxy Object

 if (_has_children)

 {

 _child_nodes[find_child (point)]->insert (point);

 }

 else //there are no children

 {

if (_bucket->size() == _bucket_capacity) //no space left in this bucket ->

we need to split

 {

 split();

 _child_nodes[find_child (point)]->insert (point);

 }

 else // try to add the spaceProxyObject into this node

 {

 _bucket->push_back (point);

 #ifdef TREE_STATS

 ++_load_count;

 #endif

 if (_dead)

 _dead = false;

//_bucket.sort(SpaceProxyObject_less(_position.get_offset(),

_axis));

 }

 }

}

void

PrKdTreeNode::remove (SpaceProxyObject* point)

{

 if (_has_children)

 {

 _child_nodes[find_child (point)]->remove (point);

 }

 else

 {

 bucket::iterator it = std::find (_bucket->begin(), _bucket->end(), point);

 if (it != _bucket->end())

 {

 _bucket->erase (it);

#ifdef TREE_STATS

 --_load_count;

#endif

 if (_bucket->empty())

 {

 if (_has_children && _zombie_check())

 {

 _destroy_child_nodes();

 }

 PrKdTreeNode* p = _parent;

 bool continue_removing = (p != 0);

 while (continue_removing)

 {

 continue_removing = p->_zombie_check();

 if (continue_removing)

 {

 p->_destroy_child_nodes();

 p = p->_parent;

 if (p == 0)

 continue_removing = false;

 }

 }

 }

 }

 else

 {

 // DEBUG

 std::cerr << "pos " << point->position() << std::endl;

// throw exception ("Could not remove payload from tree!");

 }

 }

}

void

PrKdTreeNode::spill_bucket()

{

 bucket::iterator it = _bucket->begin();

 bucket::iterator itend = _bucket->end();

 for (; it != itend; ++it)

 {

 _child_nodes[find_child (*it)]->insert (*it);

#ifdef TREE_STATS

 --_load_count;

#endif

 }

 _bucket->clear();

}

void

PrKdTreeNode::_create_child_nodes()

{

 assert (! _has_children);

 for (int i = 0; i < _max_children; ++i)

 {

 _child_nodes[i] = _pool.construct();

#ifdef TREE_STATS

 ++_node_count;

#endif

 }

 _has_children = true;

}

void

PrKdTreeNode::_destroy_child_nodes()

{

 assert (_dead && _has_children);

 for (int i = 0; i < _max_children; ++i)

 {

 if (_child_nodes[i]->_has_children)

 {

 _child_nodes[i]->_destroy_child_nodes();

 }

 _pool.destroy (_child_nodes[i]);

#ifdef TREE_STATS

 --_node_count;

#endif

 }

 _has_children = false;

 _bucket = _bucket_pool.construct();

}

bool

PrKdTreeNode::_zombie_check()

{

 if (_has_children)

 {

 _dead = true;

 for (int i = 0; _dead && i < _max_children; ++i)

 {

 _dead = _child_nodes[i]->_zombie_check();

 }

 return _dead;

 }

 else

 {

 return _bucket->empty();

 }

}

void

PrKdTreeNode::split()

{

 _create_child_nodes(); // creates new childnodes (max childnodes hardcoded set to

2)

 PrKdTreeNode* child0 (_child_nodes[0]);

 PrKdTreeNode* child1 (_child_nodes[1]);

 _aabb.split_kd (_axis, _split[_axis], child0->_aabb, child1->_aabb);

 child0->_setup (this, 0);

 child1->_setup (this, 1);

 spill_bucket();

 // this node has child nodes now, so we don't need the bucket anymore

 _bucket_pool.destroy (_bucket);

 _bucket = 0;

}

