
Institute of Neuroinformatics
University of Zurich and ETH Zurich

A Smoothed Particly Hydrodynamics Approach
to the Interactive Swarm Orchestra

Supervised by
Daniel Bisig from the

Artificial Intelligence Lab, University of Zurich

Engin Bumbacher
03-912-862

Im Loorain 14
8803 Rueschlikon

Contents

The Interactive Swarm Orchestra is a library built for both artistical
and scientific purposes. The aim of this project was to implement fluid
dynamics by use of Smoothed Particle Hydrodynamics as a behavior of
the swarm, based on the principle of swarm intelligence. The reason why
the particle-based approach has been chosen, and not another method
based on grid computation, is that it fits in well with the infrastructure
of the ISO a swarm consists of individual agents which themselves can be
seen as the particles required for the particle approximation of the fluid
dynamical forces. The main condition the implementation has to meet is
the claim for real-time processing, as interactivity and intelligent swarm
behavior are the fundamental paradigms of the ISO project. Unfortu-
nately, it turnes out that the ISO framework does have some disadvan-
tages for the SPH implementation when considering those requirements,
as they only can be fulfilled when the number of used particles is rather
low. But then again, this small number of particles clearly reduces the
accuracy of the method. While this problem was not significant in the
case of free surface fluids without any boundary, it became relevant in
the case of boundary conditions which I have implemented by means of
virtual particles. Thus, this approach to the boundary conditions was
not fruitful, which is why I have suggested a more promising approach
using wall weight functions.

Contents

1 Introduction 4
1.1 Interactive Swarm Orchestra . 4

1.1.1 Terminology [3] . 4
1.1.2 Structure of the ISO library [3] 5

2 Computational Fluid Dynamics 5
2.0.3 Mathematical Framework of Fluid Dynamics 7

2.1 Smoothed Particle Hydrodynamics (SPH) 8
2.1.1 Constructing the Kernel Function 9
2.1.2 Inherent Problems . 10
2.1.3 Boundary Treatment . 10

3 Application of SPH in this project 12
3.1 Calculation of the forces . 12

2

Contents

3.1.1 Pressure force . 12
3.1.2 Viscosity force . 13

3.2 Choice of Smoothing Kernels . 13
3.2.1 Polynomial Kernel . 14
3.2.2 Spiky Kernel . 14
3.2.3 Viscosity Kernel . 14
3.2.4 Smoothing Length . 15

3.3 Simulation . 15

4 Implementation 16
4.1 Implemented Structure . 16

4.1.1 General Structure . 16
4.1.2 iso flock fluid behavior . 18
4.1.3 iso flock virtual particles behavior 19
4.1.4 Time step and smoothing length 20

5 Discussion 20
5.1 General Problems of Implementation 20

5.1.1 Boundary Treatment . 21
5.2 Tuning of Parameters . 23

5.2.1 Fluid Behavior . 23

6 Outlook 25
6.1 Wall Weight Functions as an Alternative Implementation of the Bound-

ary Conditions . 25
6.1.1 Calculating the Wall Weight Function 27

6.2 Further possibilities of improvement 28

7 Appendix - A short guide through the code 30
7.1 Iso flock fluid main.cpp . 30

7.1.1 Set the parameters . 30
7.1.2 Define the correct spaces . 31
7.1.3 Set up the boundaries . 31
7.1.4 Add the fluid behavior to the swarm 32
7.1.5 Create the fluid drops . 33

7.2 Iso flock fluid behavior.cpp . 34
7.3 Iso flock virtual particle behavior.cpp 35

3

1 Introduction

1 Introduction

1.1 Interactive Swarm Orchestra

The Interactive Swarm Orchestra is a large library, consisting mainly of a generic
swarm simulation library (ISO Flock) which a sound synthesis library (ISO Synth)
has been added to [3].

A swarm describes an assembly of individuals or agents, having certain properties
such as mass, size, etc. in common, whose local interactions give rise to highly
complex emergent global behaviors. Thus, the emergent behavior pattern can be
seen as the collective behavior of decentralized, self-organized systems[4]. Natural
examples of swarms encompass ant colonies, fish schools and animal flocks, but also
neural networks, among others. Due to the complexity of the behavior, one also talks
of swarm intelligence, which led to algorithmic approaches to artificial swarms with
applications in several different areas, ranging from robotics to economics.

The purpose of ISO was to design a framework exploiting the interactivity and
emerging complexity of such swarms for artistic objectives, such as visualisation at
runtime or control of other ISO tools like ISO Synth. To this end, the concepts of
swarm and swarm behavior have been abstracted as follows.

1.1.1 Terminology [3]

Swarm A swarm is a collection of entities called agents with a constant basic structure
of parameters and behaviors.

Agent Agents do not exist in space as such. They rather have to be seen as labeled
containers for parameters and behaviors. Interaction among agents, between
agents and swarms or among swarms is happening on the level of parameters
and regulated via behaviors.

Parameter Parameters are labeled vectors of arbitrary dimension and manage the rela-
tionship (euclidian distance and direction) with other parameters, representing
other agents, organized in neighbor groups of the corresponding spaces. A
parameter can exist in several spaces at the same time, interacting differently
with other parameters depending on the given properties of the specific space.

Behavior A behavior describes the functional relationship among parameters. They nor-
mally require the definition of input, internal and output parameters, and the
neighbor groups of relevant parameters. These interactions as such vary the
values of the parameters without changing their structural properties.

4

2 Computational Fluid Dynamics

Neighborgroup Neighbor groups depend on the definition of the relationship among parameters
and on the spaces the parameters are existing in. They incorporate the concept
of local interaction.

Space Spaces define the environment the parameters are existing in and regulate the
calculation of the neighbor groups of the parameters.

1.1.2 Structure of the ISO library [3]

This structured approach to swarms manifests itself in the strongly object-oriented
architecture of the ISO library. Without going too much into the details: Apart from
the frameworks required for the calculations and implementations of the swarms,
there are the 4 generic base classes called swarm, agent, behavior and parameter
within the ISO flock framework and an entire ISO space framework regulating the
spatial properties and neighborhood relations. All specialized spaces and behaviors
inherit from these base classes.

The main specialized space classes are the point space class, managing distance
calculations among point like spatial objects (i.e. parameters) via a QuadTree, Oc-
Tree or higher dimensional space partitioning algorithm, and the shape space class
calculating the distances among objects in space that possess a shape (as opposed
to point like objects).

An example application transforms the tracked outline of people into a spline that
serves as movement guide for agents. For a similar purpose another type of space
manages the distribution of vectors on an n-dimensional regular grid. Such grids can
serve for example as static or dynamic force fields and propel or slow down agents
as they move through space. Another example application updates such a force field
based on tracked visitor motion.

Normally, the agents are visually manifested via their position in three dimensional
space.

The main notion of the ISO framework is the one of real-time applications. ISO
should not be seen as a simulation platform, but rather as an environment in which
agents behave and interact on a real timescale.

2 Computational Fluid Dynamics

Computational Fluid Dynamics deals with the problem of numerically solving the
analytical equations of fluid dynamics. In general, a numerical simulation of a CFD
problem involves the following factors [2]:

5

2 Computational Fluid Dynamics

1. Governing equation

2. Boundary and initial conditions

3. Domain discretization technique

4. Numerical discretization technique

5. Numerical technique to solve the partial differential equations (PDE)

There are two fundamental frames for describing the physical governing equations:
the Eulerian and the Lagrangian description. The first one is a spatial description,
where the flow is described by specification of the time history of the flow properties
at every fixed point of the domain [5] (i.e. a fixed coordinate system is used, with
the local time derivative ∂

∂t
as the essential variable), and the latter one a material

description, where the flow is described by specification of the physical properties of
each material particle as a function of time (i.e. a moving coordinate system, with
the total time derivative D

Dt
= ∂

∂t
+ vα ∂

∂vα
as the essential variable).

Concerning the domain discretization technique, there are mainly grid-based meth-
ods, which can be subdivided into Eulerian and Lagrangian ones, meshfree methods,
particle methods, such as SPH, and combinations of them. Grid-based approaches
require mesh-generation for the problem domain, thus consume a significant portion
of the computational effort. Meshfree methods on the other hand, are based on the
key idea of providing accurate and stable numerical solutions for PDEs with a set
of arbitrarily distributed nodes (or particles) without using any mesh connecting
these nodes. Finally, particle methods employ a finite number of discrete particles
to represent the state of a system and to record the movement of the system. Each
particle possesses a set of field variables such as mass, momentum, energy, position,
etc. related to the specific problem. The evolution of the physical system is then
determined by the conservation of mass, momentum and energy of the particles.

In general, obtaining analytical solutions for a set of such PDEs is not possible,
why efforts have been made in seeking for numerical solutions. In doing so, a method
is needed to provide an approximation for the values of the field functions and their
derivatives at any point. This function approximation is then applied to the PDEs
to produce a set of ordinary differential equations (ODE) in a discretized form with
respect only to time.

Smoothed Particle Hydrodynamics, as a mesh-free particle-based Lagrangian method,
provides such a framework [2].

6

2 Computational Fluid Dynamics

2.0.3 Mathematical Framework of Fluid Dynamics

The behavior of a general fluid dynamical system is governed by the conservation
of mass, momentum and energy, and the required equation of state. As this project
follows the paper of Mller et al [1], we only look at incompressible, isothermal
fluids of constant viscosity. Due to the isothermal property, the degree of free-
dom is reduced by one, why the energy of the system can be completely ignored in
this case.

Conservation of mass

The Continuity equation is:

∂ρ

∂t
+∇(ρvα) = 0, (1)

where

ρ(,x) . . . Density of the material particle at time t and position x

vα . . . Velocity of particle α.

An incompressible flow is a flow in which the density of each material particle remains
the same during the motion:

ρ(t,x(t,y) = ρ(0,y) ⇒ Dρ

Dt
= 0 ⇒ ∇(vα) = 0.

Conservation of momentum

The Navier-Stokes equation for incompressible flow and constant viscosity is:

ρ
Dvα

Dt
= −∇p+ µ∇2vα + ρf b, (2)

where D
Dt

denotes the total time derivation and

p . . . Pressure

µ . . . Viscosity coefficient (constant!)

f b . . . Body force, acting on a particle, proportional to its mass (such as gravity).

7

2 Computational Fluid Dynamics

2.1 Smoothed Particle Hydrodynamics (SPH)

SPH is a time-discrete interpolation method for particle systems. The fluid in ques-
tion is represented by a set of discrete (i.e. finite spatial extension) elements called
particles, which carry relevant properties such as mass, density, pressure, etc. them-
selves. At the same time, the particles serve as approximation points. Any physical
quantity of any particle or any field quantity at any point in space can be obtained by
averaging the relevant properties of all the neighboring particles, weighted according
to their distance from the particle or point of interest, and their density. The local
neighborhood of a particle is defined as the region within a certain range, referred to
as support domain. Thus, as the particles carry material properties and are allowed
to move in virtue of the internal interactions and external forces, SPH harmonically
combines the Lagrangian formulation and particle approximation. [2]

The formulation of SPH is often divided into two key steps. The first step is the
integral representation or the so-called kernel approximation of field functions. The
second one is the particle approximation [6].

Integral Representation

The kernel approximation for a field quantity f(x) is

< f(x) >=

∫
Ω

f(x′)W (x− x′, h)dx′,

with

< ∇f(x) >=

∫
Ω

f(x′)∇W (x− x′, h)dx′,

where

W (x, h) . . . Smoothing function or smoothing kernel

h . . . Smoothing length defining the influence area of the smoothing function

Ω. . . Problem domain of the simulation over which is integrated, with x′ ∈ Ω

and where the support domain is lying within the problem domain.

8

2 Computational Fluid Dynamics

Particle approximation

In this step, the continuous integral representations of the field function and its
derivatives are converted to discretized forms of summation. This is done by replacing
the infinitesimal volume dx′ by the finite volume ∆Vj of the particle j that is related
to the mass mj by

mj = ∆Vjρj,

where ρj is the density of particle which has to be evaluated at every time step.
The resulting equations are:

< f(xi) >=
∑
j

mj

ρj
f(xj)Wij (3)

< ∇f(xi) >=
∑
j

mj

ρj
f(xj)∇iWij, (4)

< ∆f(xi) >=
∑
j

mj

ρj
f(xj)∆iWij, (5)

where xi is the position of the focal particle i and

Wij = W (xi − xj, h) = W (|xi − xj|, h)

∇iWij =
∂Wij

∂xi

Thus, the density of particles is a fundamental field quantity underlying the con-
cept of SPH. One of the most popular forms of obtaining density (and also used in
this project) in SPH is called the summation density approach [6]:

ρi =
∑
j

mjWij (6)

Accuracy of the density can be increased by normalizing the density ρi with the
factor

∑
j(
mj
ρj

)Wij.

2.1.1 Constructing the Kernel Function

The kernel has to be chosen such that:

1. Normalization is fulfilled:
∫
W (x′)dx′ = 1

2. W (−x) = W (x) for radial symmetry

9

2 Computational Fluid Dynamics

3. lim
h→0

W (x− x′, h) = δ(x− x′) ⇒ lim
h→0

< f(x) >= f(x)

4. W (x− x′, h) = 0 when |x− x′| > h

5. W (x− x′) ≥ 0 for all |x− x′| ≤ h to ensure a physically stable representation
of physical phenomena

6. Monotonical decay with increasing distance

7. the derivatives vanish at the boundary for stability reasons

Apart from these contraints, one is free to design the kernels for special purposes.

2.1.2 Inherent Problems

SPH has some inherent problems concerning the simulation of fluids. First, SPH
does not guarantee the physical principle of symmetry. Thus, when applying SPH
to physical problems, one has to symmetrize the generated forces, as has been done
in [1]. Secondly, the accuracy of the method depends on the interpolation order
used. Thirdly, there’s the so-called particle inconsistency problem [2]: The discretized
normalization condition is not always fulfilled in meshfree particle methods. This
can be the case for particles on and near the boundary, whose support domains are
truncated by the boundary, as well as irregularly distributed particles. In the latter
case, there are several possibilities to restore the consistency condition, to obtain a
k-th order consistency in discrete form, by setting certain conditions for the kernel
function. But these are rather complicated, slow down the computational process
and especially conflict with the other above-mentioned conditions the kernel function
is subject to. As in this project, physical accuracy is not of the highest priority, I
dispense with such means. For detailed explanation see [2]. For particles at the
boundary, I have implemented the concept of Virtual Particles.

2.1.3 Boundary Treatment

The above-mentioned particle inconsistency problem appears near or on the bound-
aries because only particles inside the boundary contribute to the summation of the
agent interaction, reducing not only the velocity but also other field variables such
as the density to zero, which does not give the correct solutions. This problem can
be met by creating additional artificial particles on or outside the boundaries, which
contribute to the particle approximations in a proper way. Such particles are called
Virtual Particles [2]. They take part in the kernel and particle approximations for

10

2 Computational Fluid Dynamics

the real particles, but without being treated as real ones themselves. In order to
distinguish them from real agents in ISO, I call them particles. They are categorized
into two types:

Virtual Particles Type I These particles are placed on the solid boundary and carry
themselves physical variables, specified by the problem. Normally, in order to
correctly calculate the density of the real particles at the boundary, several
layers of virtual particles type I have to be initialized. Their position and the
other initially assigned physical variables do not evolve in time [6]. Further-
more, they exert a repulsive boundary force to prevent the interior particles
from penetrating the boundary. If a virtual particle of type I is a neighbor
of a real particle, the following force is applied along the centerline of these
particles:

f boundaryij =

{
D((r0

rij
)12 − (r0

rij
)4)

xij
r2ij

if
rij
r0
≤ 1

0 otherwise
, (7)

where

D . . . Problem dependent parameter; same scale as the square of the largest
velocity

r0 . . . Cutoff distance; usually selected approximately close to the initial particle
spacing.

This force is using a similar approach employed for calculating the molecular
force of Lennard-Jones form [8].

Virtual Particles Type II These particles are placed continually within the bound-
ary region and but do not evolve in their parameters. They are ”mirroring” real
particles near the boundary: As soon as a particle approaches the boundary,
the method generates a virtual particle of type II, placed symmetrically out-
side the boundary, having the same density, pressure and mass, but opposite
velocity. The status of the particles is updated every evolution step.

Together, these two particle types prevent real particles from penetrating the bound-
ary. Important to note is that the choice of the parameters is crucial, as each SPH
problem requires a separate set of values.

11

3 Application of SPH in this project

3 Application of SPH in this project

The aim of this project was to implement a fluid-like behavior for the swarm by
simulating an incompressible, isothermal flow of constant viscosity, and under the
influence of gravity. Due to the inherent particle-like nature of the Interactive Swarm
Orchestra, SPH seemed to be best suited for this problem. Furthermore, as real-time
simulation is a strongly desired feature, one has to lower one’s sights at physical ac-
curacy which is easily feasible with SPH due to its strong adaptability to the specific
problems. But in order to guarantee at least the main physical principals such as
symmetry of forces and conservation of momentum, one has to symmetrize the forces
generated by the SPH model. This is done by simply averaging the corresponding
physical quantities of an interacting pair of particles.

Thereby, the implementation more or less follows the one suggested by the paper
[1]. Omitted have been the sections dealing with the visualization of the fluid and
especially the surface of it, as ISO builds upon a different visualization concept,
where the individual particles resp. agents have to been visible.

As temperature is assumed to be constant for the whole system, the energy equa-
tion resulting from conservation of energy can be omitted completely. Furthermore,
as the number of particles is constant and each particle has constant mass, the mass
conservation is guaranteed, which is why the continuity equation (1) can be left out
too [1]. So, the only equation that needs to be solved, is the Navier-Stokes equation
(2). Furthermore, since SPH is a lagrangian description, we work with the total time
derivative, and thus do not have to look at the partial derivatives of the velocity
field.

Particles carry the three quantities mass, position and velocity.

3.1 Calculation of the forces

3.1.1 Pressure force

The symmetrized particle approximation of the pressure force −∇p is

fpressure
i = −∇p(xi) = −

∑
j

mj(
pi
ρ2
i

+
pj
ρ2
j

)∇Wij. (8)

I have chosen this ansatz instead of the one proposed by Mueller et al. because this
approach more consequently applies the concept of symmetrization.

For calculating the pressure, I have implemented two equations of state, the first
one suggested by Mueller et al. [1] and the latter one by Liu [2]:

p = k(ρ− ρ0), (9)

12

3 Application of SPH in this project

p = B((
ρ

ρ0

)γ − 1), (10)

where

γ. . . constant set to 7

ρ0. . . reference or rest density, chosen according to the problem

B. . . sets the limit for maximum change of density [2].

The introduced reference density makes the simulation numerically more stable, as
it guarantees that the pressure is zero as long as the particle distribution is not
changed.

3.1.2 Viscosity force

The symmetrized particle approximation of the viscosity force (∇2v) is

fviscosity
i = −∇2v(xi) = µ

∑
j

mj
vj − vi
ρj

∇2Wij. (11)

Looking at the equation, one sees that viscosity is interpreted as a force arising
from the nonzero relative velocities of interacting particle pairs, accelerating the par-
ticles in the direction of the relative speed.

Having calculated the forces, the acceleration of particle i can be obtained by:

ai =
dvi
dt

=
fi
ρi
. (12)

3.2 Choice of Smoothing Kernels

Mueller et al. proposed the use of a polynomial kernel for calculating the nonforce
field quantities, a spiky kernel for calculation of the pressure force and a special
kernel designed for the viscosity. They were designed such that the balance between
stability, speed and accuracy of the SPH method is as optimal as possible.

The chosen kernels all fulfill the conditions listed in section 2.1.1.

13

3 Application of SPH in this project

Figure 1: Left: Wpoly, Middle: Wspiky, Right: Wviscosity; Thick lines: Kernels, Thin
lines: Gradients, Dashed lines: Laplacian; Smoothing length h = 1; (Pic-
ture from [1])

3.2.1 Polynomial Kernel

Wpoly(x, h) =

{
315

64πh9 (h2 − r2)3 if 0 ≤ r ≤ h

0 otherwise
, where r = |x|. (13)

This Kernel is fast, as no square root has to be calculated, but due to the lacking
repulsion force for close distances of particles, it is not appropriate for calculating
the force fields. For this purpose, Mueller et al. [1] applied the following kernel,
designed by Delbrun [9]:

3.2.2 Spiky Kernel

Wspiky(x, h) =

{
15
πh6 (h− r)3 if 0 ≤ r ≤ h

0 otherwise
. (14)

3.2.3 Viscosity Kernel

Wviscosity(x, h) =

{
15

2πh3 (− r3

2h3 + r2

h2 + h
2r
− 1) if 0 ≤ r ≤ h

0 otherwise
. (15)

This kernel guarantees that the kernel itself and its second derivative are always
larger than zero within the support domain, thus preventing the artifact of increas-
ing the relative velocity of interacting particles, which appears in coarsely sampled
velocity fields ([1]) as is the case in our project. A further advantage is that the
Laplacian of the kernel can be calculated easily: ∇2W (r, h) = 45

πh6 (h− r).

14

3 Application of SPH in this project

3.2.4 Smoothing Length

The smoothing length of the kernel function is a particularly important variable as
it directly influences the efficiency of the computation and the accuracy of the solu-
tion, negatively affecting the first one when being too large and negatively affecting
the latter one when being too small. As a rule of thumb, one says that in three
dimensions, the number of neighboring particles should be about 60 if the particles
are placed in a lattice with a smoothing length of 2.5 times the particle spacing [2].

In this project, a constant smoothing length is used. The value is chosen depending
on the initial average density of the system.

There are many ways to dynamically evolve the smoothing length so that the
number of neighboring particles remains relatively constant. But the neighborhood
calculating algorithm in the ISO framework is not yet build such that it would allow
for a continually adapting neighbor radius.

3.3 Simulation

For the integration of equation (12), the second order scheme Leap-Frog Integration is
used [1]. In the Leap-Frog Scheme, positions are defined at times ti, ti+1, ti+2, ti+3, . . .,
whereas velocities are defined at times halfway in between, ti− 1

2
, ti+ 1

2
, ti+ 3

2
, . . ., where

ti+1 − ti+ 1
2

= ti+ 1
2
− ti = dt

2
. But if you want to define the quantities only at integer

times, the scheme looks like follows:

xi+1 = xi + vidt+ ai
(dt)2

2

vi+1 = vi + (ai + ai+1)
dt

2
.

As the ISO project requires real-time processing, time steps up to about 50 mil-
liseconds are allowed. As in the paper of Mueller et al [1], I used constant time steps,
eventhough adaptive ones would probably lead to a better performance. At the same
time, there’s a lower limit to the size of the time step as very small time steps would
result in a larger computational effort and slow down the system eventhough the
accuracy of the simulation would gain a lot from such small time steps. The system
itself is very sensitive to the time step chosen, and small differences in the time step
can lead to a completely different behavior (especially at the boundaries, see section
4.1.3). Further description in section 4.1.4.

15

4 Implementation

4 Implementation

4.1 Implemented Structure

In order to implement the SPH method in the ISO framework, I have created two be-
havior classes. One is called iso flock fluid behavior and applies the above-mentioned
SPH scheme, calculating all the required quantities such as density, pressure, kernel
and the relevant forces. The second class is called iso flock virtual particles behavior.
It calculates the repulsion force arising from the influence of virtual particles of type
I within a neighborhood of a real particle, and updates the status of virtual particles
of type II.

4.1.1 General Structure

In figure 2, you see the general procedure of an SPH simulation within the ISO
framework.

Spaces

The two behaviors require three different spaces for calculation and representation
of the SPH system:

fluid position space can be seen as the ”classical” space, within which the swarm
containing the ”real” agents, i.e. the fluid particles, lives in. It visualizes the
agent’s positions and resulting behavior.

surface position space is the space within which the positions of the virtual par-
ticles of type I live and within which the repulsion forces are calculated. To
put it simply, it is the space of solid boundaries, represented by the type I -
particles.

mirror position space is the space within which the positions of the virtual particles
of type II live. Depending on the distance of the fluid agents to the solid
boundaries, type II - particles are created, updated in their parameters, or
destroyed within this space.

Additionally, the virtual particles of type I and II not only live in their original
spaces, but also in the fluid position space, as they have to be considered in the SPH
particle approximations of the fluid agents too, as a means of stabilization and ac-
curacy (see section 2.1).

16

4 Implementation

Figure 2: Structure of the implemented code

17

4 Implementation

Parameters

The main parameters the agents are carrying are mass, position, velocity. Fur-
thermore, as a means of the final integration of behaviors acceleration and force are
added as parameters. Finally, SPH requires the agents to have density and pressure.

These are the parameters the agents contain. The parameters specific to the be-
haviors themselves are listed in the following subsections.

4.1.2 iso flock fluid behavior

ISO is a highly serially working code. As explained in the introduction, agents in the
ISO framework contain a list of parameters and a list of behaviors by which they are
defined. When running the simulation, the program goes within one time step from
one agent to another, activating every time the behavior list of the actual agent and
running the listed behaviors successively, before proceeding with the next agent. This
complicates the implementation of a SPH model for fluid dynamics, because SPH
requires that agents can access the other agent’s simultaneously evolving quantities
such as density and pressure through the kernel function. But the trick implemented
in ISO to overcome this problem and to simulate parallel behavior is the following:
When updating an agent, the newly calculated values are first buffered, invisible to
the other agents, and at the end replacing the old values.

As the neighborhood of an agent does not change within one time step, and thus
also not within the execution of the behavior for an individual agent, I store copies
of the density and pressure of the neighboring agents within arrays (so-called QVec-
tors), as well as the values of the desired kernel functions and its derivatives between
the actual agent and its neighbors. This reduces the computational cost, speeds up
the simulation, but increases memory consumption as well.

Behavior-specific parameters

Kernel is the continually changing parameter containing all the kernel values of type
”poly”, ”spiky” or ”viscosity” the agent shares with its neighbors.

KernelDerivative is the analogous for the derivative of the kernels.

Neighbor Density stores the densities of the neighboring agents within an array for
faster access.

18

4 Implementation

Neighbor Pressure is the same for the pressure.

Reference Density stores the reference density of the agents and is a global variable,
meaning that it has the same value for all agents.

Initial Pressure is a fixed constant, chosen accordingly to the problem.

Viscosity constant

Gravity acceleration

4.1.3 iso flock virtual particles behavior

The above-mentioned inherent property of ISO concerning the serial procedure causes
some complications when thinking about how to implement the virtual particle be-
havior. Unfortunately, I could not find an efficient way of creating or updating
virtual particles of type II such that they could still be incorporated within the par-
ticle approximation of the real agents within the same time step, so that the current
implementation causes some additional approximation errors. To keep those errors
as small as possible, the time step of the simulation has to be chosen small enough
so that the agents do not make too large steps within one simulation step, as the
cutoff distance of the repulsion force exerted by virtual particles of type I is very
small. Thus, if the time step was too large, the spatial steps of the agents would be
larger than the cutoff distance, leading to the fact, that the boundary particles never
would be seen as neighbors of the agents.

The code for administrating the virtual particles of type II has been implemented
such that it fits to set-ups which are made of fluids inside a jar. The only condition
the jar has to fulfill is that the agent maximally faces 3 different surfaces at once
within the jar. This means that the code can maximally generate 3 type II - virtual
particles per agent, which is for example the case if the agent is in a corner of a cubic
container.

Behavior-specific parameters

Cutoff for mirror particles is the distance from the agents to surface particles within
which type II - particles are generated.

Cutoff for surface particles sets the radius of the area around an agent within which
they sense the presence of surface particles.

19

5 Discussion

Jar size stores the size of the initially defined container for the agents.

Maximal Velocity is the parameter storing the maximal veloctiy of the agent, in order
to calculate the repulsion force exerted by type I - particles.

4.1.4 Time step and smoothing length

The choice of the time step is crucial to the numerical solution of the fluid dynamical
equations, as mentioned in section 3.3. Not only, it determines the accuracy of a
solution, but also is relevant when seeking for real-time solutions. Adaptive time
steps were proposed by Morris et al. [7], considering viscous diffusion: ∆t = 0.125×
h2

ν
, where ν = µ

ρ
is the kinetic viscosity. But here, the time steps are constant.

The smoothing length has to be chosen such that in a regular initial agent distribution
entirely with free surfaces, no pressure forces arise (see 3.2.4). As in such a case, the
agents at the boundary inherently have a different density than the ones inside the
distribution, which would give rise to pressure forces, the smoothing length has to
be set such that in the regular distribution, agents do not have neighbors inside their
support domain, or by ensuring that the reference density equals the initial density.

5 Discussion

5.1 General Problems of Implementation

While SPH is a method acting globally, ISO is a code working rather on the indi-
vidual level. That is, - put in ISO terminology - SPH is a global behavior, which
considers the individual particles only as points at which physical quantities are eval-
uated, but is rather interested in the average of all particles than on the particles
themselves. As such, SPH is a scheme which works most efficiently if the compu-
tational structure executing it works as parallel as possible. This would require to
calculate several quantities such as the kernel values globally, avoiding redundant
evaluations. In contrast, ISO focusses on the individual agents (i.e. particles) as
entities, interacting with other agents. Therefore, ISO is built such that behaviors
are nested within agents, and not vice versa. As mentioned before, this problem
could be circumvented due to the strong object-oriented character of ISO, instead of
constructing global arrays, etc. . As agents are instances of the agent class, they are
containers for all the necessary parameters and field quantities, which can easily be
accessed by others by means of the appropriate functions. But the downside to it is
that it slows down the program, comprising the required real-time character.

20

5 Discussion

A further problem was the above-mentioned condition of real-time interaction. As
SPH is a simulation method for physical phenomena, it has to fulfill certain accuracy
and stability conditions which in turn require the use of a minimal amount of agents.
The smaller their number, the less the resulting behavior resembles a fluid dynam-
ical behavior and the less stable it is. I tried to ensure interactivity by reducing
the number of computations and minimizing the use of computationally expensive
functions , but still, the program is not fast enough. For example already in the
case of two fluid drops colliding, each consisting of 216 agents, the simulation visibly
slows down. Suggestions of how to overcome this problem are mentioned in section 6.

One very subtle problems was to correctly initialize the set-up of fluid agents and
boundary particles. It requires to tune the parameters, such as initial and reference
density and pressure, smoothing length, cutoff for mirror and for surface particles,
etc. Because the SPH method and the virtual particle generator are very sensitive to
these parameters, slight changes can lead to large, unwanted effects. As the system
itself has a high degree of freedom (number of parameters) and is nonlinear to a large
extent, adjusting the parameters caused a huge mess. Especially problematic, hardly
feasible, is the calibration of the virtual particle - parameters. This is due to the fact
that the system normally gets more stable, the more particles and agents are used,
as this smoothes out unwanted effects and allows more homogeneous distributions.
But as this demand conflicts with the claim to interactivity, the number of particles
has to be reduced, whereby errors of the system do not get compensated by the
averaging and thus lead to unwanted artefacts.

5.1.1 Boundary Treatment

One of the most challenging issues was the implementation of boundary conditions.
Unfortunately, the paper of Mueller et al. did not mention this problem at all [1], so
that I had to look for other possibilities, always having in mind the claim to inter-
activity. But it became apparent that with this approach, not only did I meet some
fundamental problems I could not solve within the given time of the project, but
also extensive computational power is required, which again are inconsistent with
real-time interactions. For this reason, I propose to implement other boundary con-
ditions, which are described in the section 6.

What were the main problems of the virtual particle implementation?

Firstly, it is hardly possible to tune the parameters such that the boundary method

21

5 Discussion

really prevents all the agents in all situations from penetrating the boundary. Testing
has been done with both single agents and with fluid drops colliding with the bottom
of the jar. In the first case, adjustment of parameters is easy as long as the velocities
of the agents are not too large (relatively). As soon as velocities become large, the
agents moving towards the wall do not feel the virtual particles in their neighborhood
anymore and thus penetrate the wall, as the system works with constant smoothing
lengths and time steps. In the latter case, things get again more complicated. For
example, when the agents collide with the wall, they come very close to each other
due to the compression of the drop, giving rise to very large pressure forces acting in
the direction of movement. In order to compensate for these large-range fluctuations
of forces, the repulsion force generated by the virtual particles, and the contributions
of the virtual particles to the SPH approximations would have to adapt dynamically
in the same order of magnitude within a very short time interval. Essential is the
ratio between smoothing length, cutoff distance, maximal velocity and simulation
time step. It has to adapt to the actual situation, which again would require the
implemented code to allow for dynamically changing the parameter values.

Secondly, when agents are repulsed at the boundary, the forces generated by the
virtual boundary particles effect the agents behavior on a much too large spatial
scale, leading to behavioral artefacts. When a fluid drop falls onto the ground of the
jar, driven by gravitation, the repulsive force lets the agents bounce on the ground
for an infinitely long time without letting them come to rest, showing an oscilla-
tory behavior in a physically impossible manner. A possible reason for that could
be that the system is assumed to be isothermal and thus the energy equation has
been omitted. But obviously, in a system with boundaries, isothermal conditions
are not fulfilled, as boundary conditions imply friction. This could also explain why
the bouncing behavior persists, no matter what parameter values have been cho-
sen. Induced friction would damp the system. At the same time, one could argue
that this approach of virtual particles still would be compatible with the isothermal
condition, as the generated repulsion force is included as an external force into the
Navier-Stokes equation and as the concept of virtual particles complies with the SPH
approach (considering the fact that Mueller et al. worked with isothermal fluids, and
still were able to implement solid boundary conditions).

These problems probably arise partly because the claim to real-time computation
does not allow for very small temporal and spatial magnitudes which obviously would
be required for accurate simulations. For example, Liu et al use a cutoff distance in
the order of 10−5 and smoothing lengths in the order of 10−2 [2]. But within the ISO

22

5 Discussion

framework, such magnitudes are not beneficial, as said before.

Finally, due to the above-mentioned lower boundary of parameter magnitude, the
type II virtual particles do not show large effects within the SPH approximation
of the agents. In order to be a neighbor of an agent, the distance of the virtual
particles from the agents must be smaller than the smoothing length, so the cutoff
parameter for these type II particles has to be half the smoothing length. But as
soon as the agents have a certain velocity, they will hardly feel the presence of these
virtual particles because of the constant, relatively large simulation time step.

5.2 Tuning of Parameters

Due to the previously described problems arising from the implementation of virtual
particles in the ISO framework, I only mention the role of parameters of the fluid
dynamical behavior.

5.2.1 Fluid Behavior

If you only look at the fluid behavior within an ”infinite” space - i.e. considered
as without any boundaries -, the tuning of the smoothing length and reference den-
sity just depend on the initial agent distribution. In order to simulate fluid drops,
the initial distribution has been set as a regular, cubic ensemble of agents. Thus,
smoothing length is chosen to be slightly smaller than the initial agent spacing, and
the reference density is set equal to the initial density. As the smoothing length is
set such that no agents fall into the support domain of another agent, the boundary
of the free surface drops does not have to be treated specially.

Figure 3 shows a good example of two cubic fluid drops approaching each other
in z-direction, such that they have approximately the same velocity when colliding.
The initial pressure has been chosen large enough so that the pressure and viscosity
force are within the same range (µ = 1.5 [2]). If the initial pressure is too small or
the viscosity coefficient too large, the agents within the drops will stick together as
soon as they collide with each other, which is due to the fact that the viscosity force
becomes so dominant, that the dynamics is entirely driven by the fraction of force
showing in the direction of relative distance between two agents. This can clearly be
seen when comparing figure 4 with a small initial pressure to figure 5 with standard
initial pressure. Additionally, the gravity acceleration has been adjusted such that
the gravity force is within the same range as the other forces. Velocities have to be
chosen within a ”reasonable”, problem specific range (here within [0.0, 1.0]), because

23

5 Discussion

(a) Initial configuration

Figure 3: Succeeding frames of two cubic fluid drops approaching each other in z-
direction. The value of the initial pressure is 1.013 · 10−1.

24

6 Outlook

Figure 4: Succeeding frames after collision. The initial pressure is 1.013 · 10−4.

Figure 5: Succeeding frames after collision. The initial pressure is 1.013 · 10−1.

the faster the agents are, the smaller the time steps have to be chosen for correctly
running the simulations.

6 Outlook

6.1 Wall Weight Functions as an Alternative Implementation of the Boundary
Conditions

Unfortunately, as elaborated in the previous section, the implementation of virtual
particles led to several unsolved complications. For this reason, the next step of
the project should be to try out another possible implementation of the boundary
conditions. This implementation would have to comply with the restrictions given
by the ISO framework, assuming that the framework itself will not be changed with
respect to the neighborhood algorithm, the variability of smoothing length and the
one of the time step. Furthermore, the implementation has to overcome the problems
inherent to boundary conditions in SPH, i.e. the fact that the boundaries are not

25

6 Outlook

well-defined and the kernel sum deficiencies at the boundary.
In general, most possibilities rely on the representation of the boundary by bound-

ary particles. While some combine this with the creation of virtual particles [2][10],
others let the boundary particles exert repulsion forces [7]. Thus, one could think of
improving the existing implementation of virtual particles by creating several fixed
rows of virtual particles of type II within a smoothing length instead of using virtual
particles of type II. But as could be seen with the realization of such a method in ISO,
the problem arising from the use of boundary particles within the given framework
among others are the computational costs which steeply ascend with the number of
generated boundary particles, because particles are based on the complex concept of
agents.

Instead, I would like to propose here another possible approach of implementing
boundary conditions in a computationally efficient way. This approach, suggested by
Takahiro Harada et al., uses a distance function, calculated from a polygon model,
to represent the boundary, and introduces so-called wall weight functions required to
handle particles close to the boundary [11]. With respect to the ISO framework, this
has two significant advantages: Firstly, it allows to dramatically reduce the total
number of particles, to increase the computational efficiency with respect to real-
time processing and to use arbitrarily complex shapes of boundaries [11]. Secondly,
the ISO framework has already the concept of shapes and with it a set of classes
(iso space shape, etc.) concerned with the relationship of agents with geometric
space shapes and as such contains already functions required for calculating such
distances.

It has to be said that it is wrong to claim that this method fully dispenses with
boundary particles and in this sense provides a completely novel approach. The
method just circumvents the necessity of integrating the boundary particles into the
SPH approximation during the simulation, causing this additional computational ef-
fort, by doing the calculations of the wall weight and the distance functions involving
those boundary particles in advance.

The theoretical framework does not differ very much from the previous one. Still,
the boundary is represented by boundary particles. But now, the SPH approxima-
tions of the density, the viscosity and the pressure are split into two terms. One
contains the contributions of the real particles, and the other one consists of con-
tributions from the boundary particles (e.g. density: ρi(ri) =

∑
j∈fluidmjW (|ri −

rj|) +
∑

j∈wallmjW (|ri− rj|)). As the boundary particles are placed temporarily on
the boundary depending on the relative position of particle and wall (see figure 6),
the contribution of such wall particles is uniquely determined by the distance to the

26

6 Outlook

Figure 6: Distribution of wall particles for the computation of wall weight functions

wall boundary as follows:

ρi,wall = Zrho
wall(|rij|) (16)

fvisci,wall = µ(vi − vj)Z
visc
wall(|rij|) (17)

fpressi,wall = mi
∆xi
∆t2

= mi
(d− |rij|)n(ri)

∆t2
, (18)

where

Zrho
wall = ρi =

∑
j∈wall

mjW (|rij|).

n(ri)is the normal vector of the closest boundary point atri. (19)

Zrho
wall(|rij|) and Zvisc

wall(|rij|) are the so-called wall weight functions.

6.1.1 Calculating the Wall Weight Function

Since the wall weight functions solely depend on the distance to the wall boundary,
the functions can be computed in advance. Particles are placed on the boundary
according to figure 6 before the simulation starts such that the density of the wall
particles remains constant. The wall weight functions are only computed at a few
points within the smoothing lengths. By interpolation, the function values can be
computed at all the other points [11].

For simple polygons, the distance to the boundary is easily calculated, but as soon
as more complicated polygons are used, an auxiliary distance function is required
[11] Such a function is already provided by the ISO framework. As the boundaries
remain stable, the distances from possible particle positions to the boundary can
be precomputed too. Additionally, the normal vectors of the boundaries can be
obtained by calculating the gradient vectors at different locations, as they have the
same direction as the normal vector for the closest boundary [11]. Here, interpolation
for the other spatial points is used too.

27

References

The interpolation procedure can take place during the simulation, as the main
part of boundary computation is done in advance.

6.2 Further possibilities of improvement

As already elaborated in section 5, SPH is a type of ”globally acting” behaviors.
Thus, to improve efficiency and ensure real-time processing, it would be advisable to
implement in ISO the possibility of implementing such behaviors encompassing the
agents, and not only vice versa.

Furthermore, ISO should provide the possibility of dynamically changing global
parameters such as smoothing length and thus the neighbor radius used in the neigh-
borhood algorithm. Additionally, it would be interesting to have the possibility of
continually generating fluid agents, simulating a water tap. This again would require
a globally acting behavior.

Finally, this fluiddynamical approach could also be extended to smoke behavior in
various ways. A very interesting one is suggested by the L.Shi et al. in [?] in which
smoke is animated such that it resembles moving or still objects.

References

[1] M.Muller, D.Charypar, M.Gross, Particle-based Fluid Simulations for Interac-
tive Applications, Proc. of Siggraph Symposium on Computer Animation, pp.
154 -159, 2003

[2] G.R.Liu, M.B. Liu in Smoothed Particle Hydrodynamics (World Scientific Pub-
lishing Co. Pte. Ltd.), 2003

[3] D. Bisig, M. Neukom, J. Flury, Interactive Swarm Orchestra - Tutorials,
http://www.i-s-o.ch/doc/index.html

[4] G. Beni, J. Wang, Swarm Intelligence in Cellular Robotic Systems, Proceed.
NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy,
June 26-30, 1989

[5] P. Wesseling in Principles of Computational Fluid Dynamics (Springer Verlag),
2001

[6] J.J. Monaghan, Smoothed Particle Hydrodynamics, Annu. Rev. Astrophys.,
Vol. 30, pp. 543 - 574, 1992

28

References

[7] J.J. Monaghan, Simulating Free Surface Flows with SPH, J.Comp.Phys.,Vol.
110, pp. 399 - 406, 1994

[8] J.J. Monaghan, A. Kos, Solitary Waves on a Cretan Beach, J. Waterway, Port,
Coastal, and Ocean Engrg, ASCE,Vol. 125, 1999.

[9] M. Desbrun, M. P. Cani, Smoothed particles: A new paradigm for animating
highly deformable bodies, Computer Animation and Simulation 96 (Proceed-
ings of EG Workshop on Animation and Simulation), pp. 61 - 76, Springer-
Verlag, 1996

[10] H. Takeda, S.M. Miyama, M. Sekiya, Numerical Simulation of Viscous Flow
by Smoothed Particle Hydrodynamics, Prog. of Theor. Phys., Vol. 92, pp. 939
- 960, 1994

[11] T. Harada, S. Koshizuka, Y. Kawaguchi, Improvement in the Boundary Condi-
tions of Smoothed Particle Hydrodynamics, Computer Graphics and Geometry,
Vol. 9, pp. 2 - 15, 2007

[12] L. Shi, Y. Yu, Controllable Smoke Animation with Guiding Objects, ACM
Transactions on Graphics, Vol. 24, No. 1, pp.140 - 164, 2005

29

7 Appendix - A short guide through the code

7 Appendix - A short guide through the code

7.1 Iso flock fluid main.cpp

This subsection provides a short overview of the code and gives basic explanations
of relevant pieces of the code. I do not go explain the fluid behavior and the virtual
particle behavior in detail, as the code itself should be self-explaining, and thus I
only list what has to be known in order to run and modify the code correctly.

7.1.1 Set the parameters

30

7 Appendix - A short guide through the code

Before running the simulation, one first has to decide, whether or not a jar is
required, find out where to place the fluid drops such that they collide and decide
about the accuracy of the simulation by defining the resolution of the fluid drops
(GridSpace) and the size of time steps. One has to consider that for larger velocities,
smaller time steps should be implemented in order to guarantee stability and fluid
dynamical behavior. As can be seen, the smoothing length is set such that it fulfills
the above-mentioned conditions.

7.1.2 Define the correct spaces

The fluid dynamical simulation requires the generation of three types of different
spaces, according to the implemented methods. The main space is the point space
”fluid position space”, as this is the one where all the fluid agents live in.

7.1.3 Set up the boundaries

31

7 Appendix - A short guide through the code

The surface of the jar is being occupied by virtual particles of type one (which
are assigned to the ”fluid surface space”), according to the defined granularity. All
particles have the same properties, and are generated within the indicated for - loop.

7.1.4 Add the fluid behavior to the swarm

Here, you see all the inputs that are required for the creation of the fluid - and the
virtual particle - behaviors.

32

7 Appendix - A short guide through the code

7.1.5 Create the fluid drops

33

7 Appendix - A short guide through the code

7.2 Iso flock fluid behavior.cpp

Here, you see the act() function of this behavior. First, the kernel values for the
focal agent and its neighbors are calculated. Then, the code calculates the density
and the pressure of the focal agent, storing the respective values of the neighbors in
the arrays constructed for this purpose. Only then, the forces generated by pressure
and viscosity (and finally gravity) can be calculated.

As the ISO code calculates the acceleration by acceleration = force / mass, but as
within SPH, the acceleration has to be calculated by acceleration = force / density,
we have to divide the resulting force by the density of the agent.

34

7 Appendix - A short guide through the code

7.3 Iso flock virtual particle behavior.cpp

The first function call VirtualParticleBehavior::SurfaceParticles() calculates the
repulsion force which is generated by the virtual particles of type I within the sur-
face position space, as long as the focal agent is close enough to the boundary. The
second one, VirtualParticleBehavior::MirrorParticles(), generates the mirror parti-
cles, depending on the position of the focal agent relative to the boundaries.

35

